Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Rationality, irrationality, and Wilf equivalence in generalized factor order

Kitaev, Sergey and Liese, Jeff and Remmel, Jeffrey and Sagan, Bruce (2009) Rationality, irrationality, and Wilf equivalence in generalized factor order. The Electronic Journal of Combinatorics, 16 (2). ISSN 1077-8926

Full text not available in this repository. Request a copy from the Strathclyde author


Let P be a partially ordered set and consider the free monoid P∗ of all words over P. If w,w′∈P∗ then w′ is a factor of w if there are words u,v with w=uw′v. Define generalized factor order on P∗ by letting u≤w if there is a factor w′ of w having the same length as u such that u≤w′, where the comparison of u and w′ is done component wise using the partial order in P. One obtains ordinary factor order by insisting that u=w′ or, equivalently, by taking P to be an antichain. Given u∈P∗, we prove that the language F(u)={w : w≥u} is accepted by a finite state automaton. If P is finite then it follows that the generating function F(u)=∑w≥uw is rational. This is an analogue of a theorem of Björner and Sagan for generalized subword order. We also consider P=P, the positive integers with the usual total order, so that P∗ is the set of compositions. In this case one obtains a weight generating function F(u;t,x) by substituting txn each time n∈P appears in F(u). We show that this generating function is also rational by using the transfer-matrix method. Words u,v are said to be Wilf equivalent if F(u;t,x)=F(v;t,x) and we prove various Wilf equivalences combinatorially. Björner found a recursive formula for the Möbius function of ordinary factor order on P∗. It follows that one always has μ(u,w)=0,±1. Using the Pumping Lemma we show that the generating function M(u)=∑w≥u|μ(u,w)|w can be irrational.