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ABSTRACT 

The measurement of the damped oscillation of a section of the UK East Coast Main 

Line (ECML) catenary/contact wire system has been undertaken and the natural 

frequency and mechanical damping were found to be 1.4 Hz and 0.05 respectively. 

This information was used to assess the effect of increasing the mechanical damping 

ratio on the susceptibility of the system to an aerodynamic galloping instability. The 

section of line tested was known to gallop at wind speeds of approximately 40 mph 

and  theoretical and experimental work verified this. A friction damper arm was 

designed and 3 units fitted to the section of line effected. The introduction of 

increased mechanical damping was found to raise the mechanical damping coefficient 

of the line to between 0.095 and 0.18 and the mathematical analysis produced a 

theoretical wind speed for galloping oscillation of between 75 mph and 141 mph 
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respectively. For over a year, since the units were fitted, no problems with galloping 

instability have been observed. 

 

 

 

NOTATION 

 

α angle of attack 

δ  log decrement 

ρ  density 

ν   kinematic viscosity 

ζ  damping ratio 

ω  natural frequency 

ωd  damped natural frequency 

ωn  undamped natural frequency 

Xn  peak amplitude 

m  mass per unit length 

B  diameter of wire 

F   restoring force  

CL  lift coefficient 

CD  drag coefficient 

d  damping coefficient 

t  time 

T  vibration period time 

U  wind speed  

u*   shear velocity 

k  spring stiffness 

c  constant 

x  horizontal coordinate 

y  vertical coordinate 
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1. INTRODUCTION 

 

It has been known for a long time, that there are problems associated with large 

amplitude oscillations in the overhead conductors at a number of locations on the East 

and West coasts of Scotland. Oscillating conductors have the potential to cause 

serious dewirements at the contact wire/pantograph interface, leading to delay and 

cancellation of services using the effected lines. In all cases it has been determined 

that, in high winds, the conductors display an aerodynamically induced, large 

amplitude, oscillation. Analysis of video film of these oscillations indicates that the 

oscillations are created by a phenomenon known as galloping.  

 

Galloping is created by unsteady wind forces acting on an object. The unsteady forces 

are caused by the shape of the object generating asymmetric lift and drag forces which 

produce an undamped oscillation. A typical overhead line contact wire has a 

cylindrical shape with two side grooves to allow it to be supported by the catenary 

system as shown in figure 1. An alternative contact wire additionally has a small 

groove running along the top of the contact wire (also shown in figure 1). Stickland et 

al
[1]

  showed that the edges of these grooves, combined with flattening of the bottom 

of the conductor due to wear, produces the aerodynamic galloping phenomenon 

observed. For more information on galloping and aeroelastic phenomena in general 

the reader is referred to Sachs 
[2]

 and Simiu 
[3]

. Scanlon et al
[4]

 initially considered 

wind breaks and shelter belts as a cure for the galloping instability. However, due to 

physical constraints around the embankments upon which the overhead conductors 

exhibit the galloping instability, it was not practical to construct the shelter belts 

suggested. Also, the modifications to the wire profile suggested by Stickland et al
[1]

 

were not practical. A third means to address the problem was therefore sought. It was 

suggested that the generation of additional mechanical damping forces within the 

overhead conductor/catenery system would increase the wind speed at which 

aerodynamic galloping would occur. If the wind speed for incipient galloping could 

be increased to a level that is rarely seen, then the occurrence of galloping oscillations 

would be significantly reduced. 
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2.0 ONE  DIMENSIONAL AERODYNAMIC GALLOPING 

 

Stickland et al
[1]

 explain the aerodynamic causes of  the galloping instability and 

present the 1D equation of motion for this instability, equation 1. 
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The right  hand side of this equation is the aerodynamic contribution to the overall 

system damping. Rearranging this equation
[1]

 and recognising that that the net 

damping coefficient, d, as: 
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If this damping coefficient is positive, the system is stable and, if it is negative, the 

system is unstable. Since the mechanical damping ratio, ζ, is usually positive a system 

cannot gallop unless: 

 

0p⎟
⎠
⎞

⎜
⎝
⎛ + D

L C
d

dC

α
    (3) 

which is referred to as the Glauert - Den Hartog criterion. 

 

A system will gallop if d < 0 and this will depend upon the above criterion being met, 

the mass and mechanical damping ratio being sufficiently small and the wind speed U 

to be sufficiently high for d to meet the above criterion. When all these conditions are 

met then a galloping instability will occur.  

 

Stickland et al
[1]

 undertook wind tunnel measurements to determine the Glauert-Den 

Hartog criterion for the contact wire cross section. The wind tunnel tests were 

undertaken at a Reynolds number of 1.3x10
5
. Figure 2, shows this criterion for a new 

wire and differing amounts of wear to the lower surface. It may be seen that the 

contact wire, when new, will not gallop. However, with increasing wear, the wire will 

tend to gallop and the angle of incidence at which the wire will gallop decreases. 



 5

 

2.1 Calculation Of Wind Speed For Galloping 

 

Given the stability parameter it is interesting to calculate the wind speed required for 

the onset of galloping. The damping in the equation of motion is given by equation 2. 

Rearranging this equation for U, the wind speed, gives: 
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Now, galloping will occur when d is negative. Hence, if d is set to zero in equation 4, 

the value of U calculated is the wind speed above which galloping will occur, i.e. 
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Stickland
[1]

 had to assume a value for the mechanical damping, ζ, of the system as this 

was unknown at the time. However, by assuming a reasonable value for the 

mechanical damping it was shown that, at the correct angle of attack, it was possible 

for the  contact wire to exhibit galloping in wind speeds as low as 19 mph.  

 

The lack of success by Stickland et al in finding a cure for the galloping problem by 

either wind breaks
[4]

 or modifications to the contact wire cross section
[1]

 caused the 

authors to consider modifying the mechanical damping of the contact wire/catenery 

system. The theoretical work by Stickland et al
[1]

 suggested that increasing the 

mechanical damping of the system would increase the wind speed at which galloping 

could occur. 

 

3. MEASUREMENT OF SYSTEM DAMPING 

3.1 Theory 

Although the contact wire/catenery is a distributed parameter system, it can be 

approximated as a single degree of freedom system if it is only the first mode of 
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vibration that is of interest. For a single degree of freedom system, shown in Figure 3, 

the equation of motion can be written as; 

xckxxm &&& −−=       (6) 

assuming that no external forces act. Solution of  equation 6 results in :- 
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where A and φ are constants which depend on the initial conditions. σ = c/2m and ωd 

is the damped natural frequency of the system which, for lightly damped cases, is 

almost the same as the undamped natural frequency ωn. The damping ratio is defined 

as:- 
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The level of damping in a structure can be conveniently measured by exciting the 

structure and measuring its response. The most convenient form of excitation is an 

impulse where the ensuing vibration signal decay is measured. Figure 4 shows a 

typical trace. At each peak the sine term in equation 7 must be equal to 1 and the 

amplitude of the peak is given by:- 
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After n cycles       
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The terms σ Td is referred to as the log decrement δ and gives a measure of the 

damping in the system. 
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which, for lightly damped systems, can be simplified to 

πζδ 2=        (14) 

 Measurement of successive amplitudes of the vibration signal enables the log 

decrement to be determined and hence the damping ratio to be calculated.  If the log 

of the amplitudes of successive cycles of the motion are plotted as a function of the 

cycle number the slope of the graph equals the log decrement for a linear system with 

viscous damping. If the damping is largely structural or hysteretic damping then the 

slope of the line will decrease with the number of cycles whereas, if friction is the 

dominant dissipative force, then the slope increases with the number of cycles. 

Oscillation of the slope would indicate that the damping is different in each direction 

of motion. 

 

3.2 Instrumentation 

Because of the relatively large amplitudes of motion and the low frequencies 

involved, draw string potentiometers were utilised to measure the displacement of the 

contact and  support catenary wire. The effect of draw string potentiometers on the 

recorded damping was assessed to be minimal.  For a typical tension of 11,300N in 

the wire the addition of 30 N/m from each draw string increased the stiffness by 5% 

resulting in an increase in natural frequency of 2.2% and was considered to be 

negligible. For a tension of 17350 N the effect of transducer loading is reduced 

further. 

 

The other influence, which the transducer may impose, was frictional damping as the 

wire feeds in and out of the transducer housing. It was not possible to quantify the 

magnitude of this effect and it should be remembered that any figures for the damping 

in the system will include this contribution although it was considered to be small. 

Therefore the damping ratios obtained are likely to be a slight overestimate of the real 

damping in  the system. 

 

The transducer range was 0 – 1m and the potentiometers were powered by a 10v 

laboratory power supply. The voltage output was therefor 0v for 0 displacement and 

10 v for 1m displacement. The signals from the transducers were fed to a TEAC 

digital data recorder on channels 1 and 2. Channel 1 recorded data from the transducer 
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connected to the support catenary and channel 2 recorded data for the conductor wire. 

Recordings of the measurements were made and the tape played back through a PC 

based data acquisition system for analysis 

 

Measurements of the dynamic behaviour of the catenery/contact wire systems were 

made at night with no rain and a moderate wind. The temperature was approximately 

10
o
C. A mobile hydraulic trolley was used to provide a stable platform approximately 

0.5 m below the contact wire. Test locations were identified as follows :- 

 

Location 1 – approximately mid span on the span to the north of support  

Location 2 – approximately ¼ span north of support. 

Location 3 – at the support. 

Location 4 – approximately ¼ span south of support 

Location 5 – approximately mid span south of support. 

 

At each location the transducer bar was clamped onto the platform directly beneath 

the cables using a G clamp. The draw strings were attached to each cable such that 

when the cables were stationary the draw strings were extended by approximately 

350mm. The power supply was set to 10v and the output from each transducer was 

connected to the tape recorder inputs. Channel 1 recorded data from the support 

catenary vibration and channel 2 from the conductor wire. For each measurement, the 

conductor cable was forced downwards by 2 operators until the transducer draw 

strings were almost at zero and then the cable was quickly released. The ensuing 

vibration was then recorded until it died away. At each location 4 or 5 tests were 

conducted. Figure 5 shows the instrumentation set up during the measurement 

process. 

 

4.0 RESULTS 

 

4.1 Results – original catenery/contact wire 

 

Figure 6 shows the typical response curve for a test and figure 7 shows a typical plot 

of  the ln of amplitude against cycle number. Calculation of the slope of this line 
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allows the log decrement to be determined and hence the damping ratio. From figure 7 

it may be seen that the log plots did not produce a straight line as expected for a linear 

system. This was considered to be due to non-linearities (friction) that had been 

introduced into the system. The traces, therefore, required some interpretation in order 

to determine the damping ratio of the system. The solid line is a line plotted through 

the first two points and the dashed line is a line of best fit through all the points. It was 

thought that the first and second points, representing the initial displacement and the 

first overshoot, were the most accurately measured points but would give the most 

optimistic assessment of the damping ratio. Whilst the line of best fit would give 

pessimistic result. Calculated values of damping ratio and measured natural frequency 

of the system may be seen in table 1. 

 

4.2 Addition of Mechanical Damping 

Figure 8 shows a one degree of freedom system with additional frictional damping 

The equation of motion for the system is:- 

Fcxkxmx ±−−=       (13) 

F acts in the opposite direction to the velocity of the mass to resist motion. Usually, 

the magnitude of F is assumed to be constant, which is acceptable for large amplitude 

vibration. At zero velocity, the friction force is able to increase to oppose motion until 

the limiting friction force is achieved. Any further increase in the applied force will 

then cause motion to occur. Equation 13 is non linear and thus the easiest means of 

obtaining a solution is to simulate its behaviour by evaluating the forces acting at 

small time intervals throughout the period of interest.  

 

The equation was modeled in TUTSIM, a PC based simulation package, to investigate 

the effect of adding friction to the system. In section 3.1 it was shown that the 

following parameters are applicable to the equivalent single degree of freedom 

system; mass, m = 14.6 kg, stiffness, k = 1130 N/m and natural frequency, ωn = 1.4 

Hz. Theoretically the frictional force could be engineered to any value. However, the 

greater the friction force the larger will be the contact force between the cable and the 

pantograph when a train passes. Also the cable will not return to the original 

equilibrium position as it will be restrained by an excessive friction force. The 

maximum value of this offset will be equal to the friction force divided by the 
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stiffness of the equivalent spring. In general it will be less than this value, the precise 

value depending on the disturbance applied to the system. If a potential maximum 

offset of ± 20 mm was considered acceptable, then the friction force could be up to 

1130 x 0.020 = 22.6 N. It should be noted that this force is not the vertical pantograph 

force but the maximum force possible in the damper which will produce a maximum 

of 20mm fixed displacement in the contact wire. 

 

 

Three cases were modelled by  TUTSIM: For an initial displacement of 400 mm the 

simulation was run for 10 seconds with zero friction, with 11.3 N and 22.6 N friction 

forces. The time displacement histories were calculated, the log decrement determined 

and hence the theoretical mechanical damping of the system was calculated. The 

TUTSIM analysis showed that, for  a friction force of 22.6 N,  the system damping 

would increase threefold and result in a possible cable height variation of ± 20 mm. It 

was concluded that a pre-tensioned bolt, clamping the support arm to the support 

frame, would seem to be the easiest way of providing the required friction. Figure 9 

shows a schematic of the final design of the mechanical damper and figure 10 shows 

the prototype damper in situ on a support arm. 

 

4.3 Results – increased damping 

 

Table 3 shows the damping ratios and natural frequency for the system with the  

mechanical Damper installed. 

 

5.0 DISCUSSION 

 

It may be seen from table 1 that Stickland’s
[1]

 original estimate of ω = 1.352 Hz for 

the natural frequency of the system was reasonable when compared with the measured 

natural frequency of approximately 1.4 Hz. However, the estimate for the damping 

ratio of 0.1 would appear to be optimistic compared to the real, measured, damping 

ratio of 0.05 It is interesting to analyse the effect of this low rate of mechanical 

damping on the wind speed required for the onset of galloping. The results of this 

comparison for a cable tension of 11,300N may be seen in table 4. 
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These results would indicate that the system is prone to a galloping instability at wind 

speeds as low as 10 mph. However it should be noted that instability at such low wind 

speeds can only occur at very high angles of attack. At low angles of attack, a Glauert 

Den-Hartog criterion of approximately –1 results, indicating a galloping onset speed 

of  approximately 40 mph which is in line with observations of the wind speeds at 

which galloping occurred in the real life system. 

 

It is interesting to note that the amplitude of displacement in figure 6, measured 

without the extra mechanical damping, whilst originally decaying, remains at constant 

amplitude as a gust of wind passes over the wire. The gust speed was estimated at 

between 6.7 and 8.9 m/s resulting in a displacement was approximately 60mm thus 

indicating the tendency of the system to gallop at slightly higher wind speeds.  

 

With the introduction of the frictional damper into the original system the increased 

mechanical damping had a significant effect on the galloping onset wind speed as 

shown in table 4. The estimate of the new mechanical damping of 0.095 indicated an 

increase in the galloping onset wind speed, at low angles of attack, from 40 mph to 75 

mph. The mechanical damping of 0.095 represented a pessimistic analysis of the data. 

An optimistic analysis yielded 0.18 and would give a galloping onset wind speed of 

141 mph. The 75 mph corresponds to gust speeds in gale force winds (47-72 mph) 

whilst the higher speed of 141 mph corresponds to wind speeds in excess of hurricane 

force (82mph). 

 

Three of the dampers were manufactured and installed on the East Coast Main line in 

January 2001. After over one year of operation no de-wirements or galloping 

problems had been reported. Previously between 7 and 12 incidents occurred each 

year at this site, resulting in significant costs to the operating company and potential 

delays to passengers. 

 

6. CONCLUSIONS 

The authors have successfully measured the mechanical damping coefficient of the 

overhead catenary/conductor system on a section of the British East Coast Main Line. 
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This has shown that the original value for the damping coefficient used by Stickland 

et al was optimistic and that, with a more realistic value, the wind speeds at which 

galloping might occur in a worn contact wire are much lower than originally 

predicted. 

 

The authors have designed, built, installed and tested a device that increases the 

mechanical damping in the overhead catenary/contact wire which has significantly 

increased its mechanical damping. With the new mechanical damping device installed 

the wind speed, at which galloping might occur, has been raised to the equivalent of 

gusts from storm force winds and above and may be as high as hurricane levels. These 

wind speeds are extremely rare in the UK. 

 

In the year following installation of three of the friction dampers no report of 

problems resulting from galloping have been received. 
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Figure 1: Contact wire cross section 
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Figure2: Glauert-Den Hartog Criterion 
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Figure 3: Single degree of freedom system 
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Figure 4: Typical vibration trace 
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Figure 5: Displacement transducers connected to overhead wires 
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Figure 6: Displacement (/m) time history 
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Figure 7: Ln of amplitude against cycle number 
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Figure 8: Single degree of freedom system with frictional damping 
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Figure 9: Drawing of mechanical damper 
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Figure 10 Mechanical damper attached to steady arm 



 25

List of tables 

 

Table 1 Measured natural frequency and damping ratio of the original system 

Table 2: Effect of friction on damping ratio 

Table 3 Natural frequency and damping ratio system with increased damping  

Table 4: Galloping onset speed, U m/s (mph), as a function of mechanical damping



 26

 

 

 Frequency (Hz) Damping Ratio 

Pos. Test 

1 

Test 

2 

Test 

3        

Test 

4 

Test 

5 

Ave Test 

1 

Test 

2 

Test 

3 

Test 

4 

Test 

5  

Ave 

1 1.4 1.4 1.4 1.38 - 1.4 0.07 0.06 0.04 0.06 - 0.06

2 1.37 1.35 1.36 1.55 1.33 1.39 0.05 0.05 0.07 0.1 0.04 0.06

3 1.12 1.12 1.12 1.09 - 1.11 0.04 0.04 0.04 0.07 - 0.05

4 1.15 1.17 1.18 1.17 - 1.17 0.03 0.02 0.03 0.02 - 0.03

5 1.16 1.15 1.16 1.16 1.16 1.16 0.06 0.06 0.06 0.08 0.06 0.06

                                                                                                                 Ave     0.05 

Table 1 Measured natural frequency and damping ratio of the original system 
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 Viscous damping Friction 11.3 N Friction 22.6N 

Log Decrement σ 0.3135 0.493 0.905 

Damping ratio ζ 0.05 0.08 0.144 

 

Table 2: Effect of friction on damping ratio. 
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 Frequency (Hz) Damping Ratio 

Pos. Test 

1 

Test

2 

Test 

3 

Test 

4 

Test

5 

Ave Test

1 

Test

2 

Test

3 

Test 

4 

Test 

5 

Ave 

1 1.4 1.37 1.43 1.43 1.44 1.41 0.07 0.08 0.08 0.08 0.08 0.07 

2 1.38 1.39 1.36 1.37 1.35 1.37 0.1 0.13 0.09 0.12 0.1 0.108

3 1.13 1.14 1.13 - - 1.13 0.12 0.12 0.11 - - 0.117

4 1.19 1.18 1.19 1.18 1.19 1.19 0.08 0.08 0.08 0.07 0.09 0.08 

5 1.18 1.3 1.1 1.3 1.3 1.24 0.09 0.09 0.07 0.09 0.09 0.086

                                                                                                           Ave     0.094 

Table 3 Natural frequency and damping ratio system with increased damping 
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  Stickland
[1]

 Original Modified 

Conservative 

Modified  

Largest 

⎟
⎠

⎞
⎜
⎝

⎛ + D

L C
d

dC

α
 

ζ= 0.1 

ω = 1.35 

ζ= 0.05 

ω = 1.4 

ζ= 0.095 

ω = 1.4 

ζ= 0.18 

ω = 1.4 

-1 33.9 (76) 17.5 (39) 33.3 (75) 63.1 (141) 

-2 16.95 (38) 8.8 (20) 16.7 (37) 31.6 (71) 

-3 11.3 (25) 5.8 (13) 11.1 (25) 21.0 (47) 

-4 8.48 (19) 4.4 (10) 8.3 (19) 15.8 (35) 

 

Table 4: Galloping onset speed, U m/s (mph), as a function of mechanical damping 

 

 




