Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A spectral approach to consecutive pattern-avoiding permutations

Kitaev, Sergey and Ehrenborg, Richard and Perry, Peter (2011) A spectral approach to consecutive pattern-avoiding permutations. Journal of Combinatorics, 2 (3). pp. 305-353. ISSN 2156-3527

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We consider the problem of enumerating permutations in the symmetric group on n elements which avoid a given set of consecutive patterns S, and in particular computing asymptotics as n tends to infinity. We develop a general method which solves this enumeration problem using the spectral theory of integral operators onL2([0,1]m), where the patterns in S have length m+1.Kre\u{\i}n and Rutman’s generalization of the Perron–Frobenius theory of non-negative matrices plays a central role. Our methods give detailed asymptotic expansions and allow for explicit computation of leading terms in many cases.As a corollary to our results,we settle a conjecture of Warlimont on asymptotics for the number of permutations avoiding a consecutive pattern.