Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Counting occurrences of a pattern of type (1,2) or (2,1) in permutations

Claesson, Anders and Mansour, Toufik (2002) Counting occurrences of a pattern of type (1,2) or (2,1) in permutations. Advances in Applied Mathematics, 29 (2). 293–310. ISSN 0196-8858

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Babson and Steingrimsson introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. Claesson presented a complete solution for the number of permutations avoiding any single pattern of type (1,2) or (2,1). For eight of these twelve patterns the answer is given by the Bell numbers. For the remaining four the answer is given by the Catalan numbers. With respect to being equidistributed there are three different classes of patterns of type (1,2) or (2,1). We present a recursion for the number of permutations containing exactly one occurrence of a pattern of the first or the second of the aforementioned classes, and we also find an ordinary generating function for these numbers. We prove these results both combinatorially and analytically. Finally, we give the distribution of any pattern of the third class in the form of a continued fraction, and we also give explicit formulas for the number of permutations containing exactly r occurrences of a pattern of the third class when r∈{1,2,3}.