Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Counting segmented permutations using bicoloured Dyck paths

Claesson, Anders (2005) Counting segmented permutations using bicoloured Dyck paths. The Electronic Journal of Combinatorics, 12. ISSN 1077-8926

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A bicoloured Dyck path is a Dyck path in which each up-step is assigned one of two colours, say, red and green. We say that a permutation π is σ-segmented if every occurrence o of σ in π is a segment-occurrence (i.e., o is a contiguous subword in π). We show combinatorially the following two results: The 132-segmented permutations of length n with k occurrences of 132 are in one-to-one correspondence with bicoloured Dyck paths of length 2n−4k with k red up-steps. Similarly, the 123-segmented permutations of length n with k occurrences of 123 are in one-to-one correspondence with bicoloured Dyck paths of length 2n−4k with k red up-steps, each of height less than 2. We enumerate the permutations above by enumerating the corresponding bicoloured Dyck paths. More generally, we present a bivariate generating function for the number of bicoloured Dyck paths of length 2n with k red up-steps, each of height less than h. This generating function is expressed in terms of Chebyshev polynomials of the second kind.