Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Impulsive corona discharges for fine particles precipitation in a coaxial topology

Mermigkas, Athanasios and Timoshkin, Igor and MacGregor, Scott and Given, M and Wilson, Mark and Wang, Tao (2014) Impulsive corona discharges for fine particles precipitation in a coaxial topology. IEEE Transactions on Plasma Science, 42 (10). pp. 3089-3094. ISSN 0093-3813

[img]
Preview
PDF (Micro-Precipitation 2014)
Micro_Precipitation_2014.pdf - Accepted Author Manuscript

Download (584kB) | Preview

Abstract

Air-borne micrometer and submicrometer particles produced by anthropogenic sources contaminate atmospheric air, especially in large cities where both population and industrial activities are higher leading to a reduced air quality. Recent research has pointed out particles less than 2.5 μm in diameter (PM2.5) as a potential health hazard. To address this issue, stricter legislation has been put into force to reduce PM2.5 emissions. This paper is focused on the development of an impulsive microelectrostatic precipitation technology for charging and removal of fine air-borne particles in an economically feasible way. In this paper, a compact coaxial precipitator has been developed for possible indoor air cleaning applications. High-voltage impulses together with dc voltage have been used for energization of the reactor as it has been shown to enhance the precipitation efficiency. This precipitation system has been used for removal of fumes and fine air-borne particles from ambient air. In addition to the experimental part, analytical work has been conducted to optimize the electrostatic precipitation process and to reduce its power consumption.