
Extracting Plans From Plans

David Pattison and Derek Long
Department of Computer and Information Science
University of Strathclyde, Glasgow G1 1XH, UK
{david.pattison, derek.long}@cis.strath.ac.uk

Abstract

Propositionalplansof all forms often display a certain level
of concurrency which can be exploited byschedulingthe
plan. This reveals the earliest times at which each action can
be applied whilst still achieving the goal and shortening the
plan duration. However, the output of this scheduling process
is simply a set of timestamped actions, losing implicit infor-
mation present in the original plan such as the causal links
between actions and states.
In this paper we presentPIMP (Plans Inside Multi-threaded
Plans), a domain-independent algorithm which can schedule
a plan whilst retaining the knowledge inherent in a traditional
plan. We exploit this using the concept ofthreadsto detect
individual, concurrent and interleaved plans and discuss the
benefits of thesethread-scheduledplans and their possible
applications.

1 Introduction

The field of Planning is concerned with the production of a
series of ordered actions which transform an initial state into
one which contains a set of required goal facts. Theseplans
can often bescheduledto minimise the usage of certain re-
sources and overall plan length by finding the earliest time
at which each action is applicable. While the resulting set of
discrete timestamped actions is useful, it loses information
present in the original plan structure.

Consider a problem in which an astronaut and au-
tonomous rover must collect rock and soil samples from two
locations and analyse them at the lander. One plan would
have both separate and take samples of each resource indi-
vidually before returning to the lander, with the rover hav-
ing a shorter plan length. Now consider that the domain has
other resource locations which are of interest, but are not re-
quired to be sampled as part of the original plan and further-
more are unknown at the time of plan construction. Given
a series of traditionally-scheduled discrete actions, detect-
ing and exploitingopportunitieslike these is difficult. Yet it
is clear to a human there are two separate plans being exe-
cuted – one for the astronaut and one for the rover. If these
plan threadsare encoded and known to each of the executing
agents (the astronaut and rover), then they can deduce their
ownsub-stateof the overall state which in turn enables pre-
viously undetectable plan exploitation such as performing

real-time plan modification. In the case of an autonomous
agent such as the rover, this can allow the exploitation of
further research opportunities, while adhering to the origi-
nal plans time constraints. Furthermore, if the original plan
requiressynchronisationof threads, such that two threads
must complete in order for the goal to be met or an action
to become applicable, the agent will know which facts must
hold at the synchronisation point, something which can be
taken into account when amending a thread.

The production of athread graphsuch as that in Figure
2, which contains all threads also has applications in au-
tonomous assistance. For example, in the above problem
the original plan may be for the astronaut to take both sam-
ples. When combined with a plan/goal recognition system
(Kautz 1987), it becomes possible to detect which sample
the astronaut is moving to first, at which point the rover can
decide to execute the thread which achieves the second goal.
Conversely, in an adversarial environment such as a real-
time strategy (RTS) game the use of a recognition engine
would allow the detection of possible weak points in an op-
ponent’s plan, such as breaking the conditions required at a
synchronisation point.

In this paper we present thePIMP algorithm, which pro-
duces a series of planthreadsfrom an unscheduled plan.
Each thread is a subset of the original plan and allows for
parallel, discrete execution of steps while retaining explicit
links between actions in the same manner as the original
plan. Threads are then stored in a graph structure which
enables detection of thread synchronisation and splitting
points. Later, we present possible applications of the al-
gorithm, primarily in the context of video games but also
discuss other applications which have similar traits.

The structure of this paper is as follows: we first begin
by defining the various components of the problem and any
assumptions made. The algorithm itself is then described
in detail such that replicating results should be possible.
We then offer various application areas where thesethread-
scheduledplans would be of benefit, before discussing our
work in the context of previous related work. Finally, we
present our conclusions and propose future extensions to the
algorithm and research.

2 Problem Definition
In order to construct plan threads and an associated thread-
graph, several assumptions are made about the work-
ing domain. We first assume we are working with
a propositional domain (such as theSTRIPS formalism
(Fikes and Nilsson 1971)), and are given an unscheduled
planP which is comprised of a set ofn totally-ordered ac-
tions〈a1, a2, a3...an〉. These actions may form acomplete
or partial plan, but the first action must be applicable in
the current working state. This allows us to construct plans
in both an incremental and post-hoc manner, thus allowing
threads to be generatedduring plan construction or obser-
vation. P must be unscheduled and purely propositional as
PIMP will perform its own scheduling which may disrupt any
resource constraints present in a scheduled plan.

We also assume access to the planning problemΠ =
{FR, O,A, I,G} from which this plan has been created,
whereFR is the set of allreachable facts, O is the set of
objectswhich exist in the domain,A is the set ofgrounded
actions, I is the set of facts true in the initial state andG is
the set of goal facts which must be true in the final stateSn.

Each actiona ∈ A is a tuple{apre, aadd, adel, aobj},
whereapre, aadd and adel are sets of facts corresponding
to the preconditions, add effects and delete effects of the
action, with the union ofaadd and apre denoted asaeff .
aobj is the set of allobjectswhich appear as parameters in
apre, aadd andadel.

Finally, we assume that the problem domain has nounde-
tectablemutually-exclusive facts (mutexes). This ensures
that there is no possibility of destructive interactions be-
tween actions being executed on separate threads at the
same time. This final assumption can of course be re-
laxed if the system has access to a complete (possibly hand-
made) set of known mutually-exclusive facts. We detect
mutexes and reachable facts using Helmert’s work in SAS+
(Helmert 2009) and to generate acausal graphfrom which
we extractcontroller objects.
Definition 1. Causal Graph – Thecausal graph (CG) is a
single digraph(V,E), where each vertexv ∈ V is equiv-
alent to an object in the domain. A directed edge(u, v)
exists ifu 6= v and there exists an actiona ∈ A such that
∃eff ∈ aeff hasv in its parameters, and∃f ∈ {apre∪adel},
for whichf hasu as a parameter.
Definition 2. Controller Objects – A nodev in the causal
graph is acontroller object iff |vout| > 0 and |vin| = 0,
wherevout and vin correspond to the number of outgoing
and incoming edges forv. Controller objects exist only to
modify other objects without being directly affected them-
selves.

The presence of controller objects is often an indica-
tion that the final graph will be split into parallel, non-
overlapping threads, with each thread using a single con-
troller object. We make use ofcontroller objectsduring the
thread generation process, but note that not all domains will
exhibit these as a property.

Finally, as we are working with a propositional model we
have no explicit concept oftime. While it is true that ac-
tions are scheduled to begin at times of the formt or t+n

wheret, n ∈ Z, strict adherence to these timestamps by the
executing system is left to its discretion.

3 Extracting Threads from Plans
In order to detect the threads present in a plan, we must re-
construct the plan from its initial state to produce athread
graph – a structure which contains traditionally-scheduled
timestamped actions, but crucially also keeps track of the
links between consecutive actions. As we are interested in
detecting and exploiting parallel action sequences, we use
the concept ofplan headsto encapsulate then current states
which exist as the graph is constructed. For example, if we
find that actionsa1 anda5 can be applied inI and are non-
mutex, two new plan heads would be formed as a result of
application.

Each plan headh ∈ H , is a tuple{Sh,H, Ih, FU , OP },
whereSh is the current state known toh andSh ⊆ S, with
S being the overall current stateS =

⋃
Sh, ∀h ∈ H . H is

a further tuple{Sprev, Aprev, Lprev}, corresponding to lists
representing the previousstates, actionsandaction linksen-
countered in the life ofh. Ih corresponds to the state this
plan head began in andFU is a set ofunused factswhich
have been added toSh since Ih and not deleted or used
as a precondition to any action applied toh. OP is the
union of all parameters of all actions applied inh, such that
OP =

⋃
aobj , ∀a ∈ Aprev.

BothFU andOP are used to determine thelink that exists
between the previous state ofh. The detection of these links
is a harder problem than simply scheduling the plan, as it
requires the ability to link possibly non-consecutive actions
into a linear sub-plan.

3.1 Graph Construction
At the beginning of the graph construction process (see Al-
gorithm 1), only one plan head will exist containing the ini-
tial stateI. The rest of the graph will be populated by apply-
ing actions to this head’s state, with the resulting new state
or states becoming the new plan heads. If the plan contains
duplicate actions〈a1...an〉, we enforce a constraint which
preventsat+1 from being applied beforeat.

Once the initial head has been created, the algorithm loops
until all actions in the plan have all been inserted into the
graph. If an action is applicable in one of the active plan
head states, it is mapped to this and a new head is formed
from its application at the end of the loop, with the previous
iterations heads being discarded.

However, it is insufficient to simply link an action to the
first plan head state in which it is applicable as this will
inevitably lead to an inconsistent plan thread. Consider a
domain in which two trucks are to deliver two packages to
waypoint C. Trucks 1 and 2 start at waypoint A and B and
their respective packages are already present at these loca-
tions. We are then presented with a plan in which each truck
is loaded with its package and driven to location C.

If we construct a thread-graph in which each action is
linked to the first plan head which meets its preconditions,
we end up with a graph similar to Figure 1, as the system
does not recognise that(drive truck truck2 wpb
wpc driver2) would be better applied in head 3. We

1

2

load_truck package1 truck1 wpA

3

load_truck package2 truck2 wpB

4

drive_truck truck1 wpA wpC driver1

5

drive_truck truck2 wpB wpC driver2

6

unload_truck package1 truck1 wpC

X

Broken- cannot apply "unload_truck package2 truck2 wpC"

Figure 1: The result of applying actions to heads without
any link inference.

solve the problem of actions being applicable in multiple
heads throughlink inference– analysing the history of a plan
head for a link with applicable actions.

Definition 3. Links

1. Causal Link – A causal link exists between a plan headh
and applicable actiona iff ∃f ∈ apre andf ∈ FU . That
is to say, if any of the actions applied within the lifetime of
h added a fact which has not appeared as a precondition
or delete effect to any succeeding action, then a causal
link exists between the head and applicable action.

2. Controller Link – Given a domain which exhibits con-
troller objectsOC , a controller link exists between a plan
headh and applicable actiona iff ∃o ∈ OC ando ∈ OP .
As controller objects tend to control entire threads from
plan initialisation to completion, it is sufficient to infer
that a link exists between a plan head and action if the
controller object has been use previous to the currently
applicable action.

3. Object Link – Object links are weaker forms of controller
links which do not require a controller object to be present
in OP . Instead, a link is present iff∃o ∈ OP , o ∈ aobj
ando /∈ OC . The number of object links between a plan
head andn applicable actions is used to determine the
precedence of the action.

We prioritise links in the order〈causal, controller, ob-
ject〉, but also recognise there may be situations where no
link exists between heads (as would be the case for all ac-
tions applicable in the head associated withI).

If we now apply link-inference to the previous example
the output will be Figure 2, which correctly recognises the
individual threads are connected by the appropriate links.

1

2

load_truck package1 truck1 wpA

3

load_truck package2 truck2 wpB

4

drive_truck truck1 wpA wpC driver1

5

drive_truck truck2 wpB wpC driver2

6

unload_truck package1 truck1 wpC

7

unload_truck package2 truck2 wpC

Figure 2: The correct thread-graph produced with link infer-
ence.

These links also act as a tie-breaker when an action is appli-
cable in more than one head.

3.2 Mutex Detection
Naturally, it is unacceptable to simply allow every applica-
ble action in a head to be inserted into the graph. To obtain
a non-mutex set of applicable actions for each head, we fil-
ter actions based on type of mutex or their position in the
original plan (see Algorithm 2);

Beyond the traditional GRAPHPLAN style mutexes
(Blum and Furst 1995), we also detect a further “pause” mu-
tex, in which the action both adds and deletes the same ef-
fect at the same time. These actions act as a semaphore on
certain objects and must be detected in order to prevent oth-
erwise non-mutex actions from being applied at the same
timestep (regardless of whether they are being applied in
the same head). An example of these can be seen in Figure
3, whereincommunicate soil data cannot be applied
in state 9, becausecommunicate rock data both adds
and deletes the effect(channel free lander) which
is also a precondition ofcommunicate soil data. The
former is applied in state 9 because it appears first in the
original plan.

We also introduce a further test for mutex actions to cover
the following situation. Consider anotherDRIVERLOG prob-
lem which has a plan head where the following 4 ordered
actions are applicable:(unload p1 t l1), (load
p2 t l1), (drive t l1 l2) and(disembark d
t l1), wherep1 andp2 are packages,t is a truck,d is a
driver andl1 andl2 are locations.

PIMP first checks for mutexes betweenunload and the
other actions, and discovers thatdrive deletes one of its
preconditions.drive is then added to adelayedlist and
the algorithm progresses toload, which has no mutex ac-
tions asdrive has been removed from the list of actions to
be considered. This leaves onlydisembark which, being
the last action checked, naturally has no actions to be mutex
with, and so is added to the applicable list.

While this may see reasonable, by allowingdisembark
to be applied at timestept we have prevented the algo-
rithm from completing successfully, because the effects of
disembark blockdrive from ever being applicable. To
resolve this rare situation, we introduce a further test on all

delayedactions which determines if the action currently be-
ing checked for mutexesati deletes any of the preconditions
of a delayed action. If this delayed action also precedesati
in the original plan we also addati to thedelayedset, as it
is conceivable that its application could prevent preceding
actions from being applicable in any head.

3.3 Dead Head Propagation

Until now we have only considered plans which contain
threads ending at the same time. However, it is often the
case that one plan head will terminate long before others,
thus becoming adeadhead. That is, none of the remaining
unscheduled actions can be applied to the current state.

This presents a dilemma if a longer thread which started
at the same time as another shorter thread later relies on a
subset of facts achieved by the shorter thread. For instance,
in Figure 4 one of the threads terminates at sub-state 10
containing facts required in state 11, which prevents further
thread-graph generation. We resolve this bypropagatingthe
facts from the dead head through all live heads which are
connected by a common root in the graph (see Algorithm 2).
This common root is the first node found by regressing back
up through the graph from the dead head which also has a
live head as a child node – other unconnected live heads are
not affected.

These connected live heads have their plan historyH up-
dated to reflect the actions executed in the dead thread, and
also have theirunused factsFU and used objectsOP up-
dated. Due to the live head now containing all aspects of
the dead head we must restart the iteration without assign-
ing any previously applicable actions, as the addition of new
facts may allow other actions to become applicable.

As a special case, ifall heads are found to be dead
but there are still unscheduled actions remaining, we must
merge at least two dead heads into one live head. For
instance, Figure 3 shows a plan for a modifiedROVERS
domain in which rovers must link-up together to provide
enough power for communication to occur. Both rovers
acquire samples for their respective goals then move to
waypoint4 where they link together. However, in order
for thesynchronise action to be applicable, both threads
must be merged into a single state, because they individu-
ally do not contain the literal needed. This union of heads is
performed by considering all possible combinations of cur-
rently live heads and choosing that which has the fewest
heads. This guarantees that the next unscheduled action is
applicable and execution can continue.

Once the thread-graph has been constructed fully it be-
comes possible to detect the earliest and latest possible start
times of each action by performing a breadth-first search
from the root node. Individual threads are then extracted
by moving back through the graph from both liveand dead
heads. A thread terminates when it reaches the root node,
or one of its actions requires a merge between two other
threads. The set of timestamped threads can then be passed
onto a dispatcher for execution at the appropriate time.

1

2

navigate rover1 waypoint1 waypoint2

3

navigate rover2 waypoint1 waypoint3

4

sample_rock rover1 rover1store waypoint2

6

navigate rover1 waypoint2 waypoint4

8

NullAction

5

sample_soi l rover2 rover2store waypoint3

7

navigate rover2 waypoint3 waypoint4

NullAction

9

synchronise rover1 rover2 waypoint4

1 0

communicate_rock_data rover1 rover2 lander waypoint4

1 1

communicate_soi l_data rover2 rover1 lander waypoint4

Figure 3: Synchronisation of two dead threads in order to
allow further actions to be applicable.

4 Applications

We now present several possible situations where integration
of thePIMP algorithm into a standard Planning system would
be beneficial.

4.1 Opportunities

Once the original plan has been split into threads, each
thread can be executed individually within its allocated time
bounds. In a scenario where two threads must meet at a syn-
chronisation point in order for a third thread to start, it is
often the case that one of the threads is shorter than another.
Given that each thread is aware of the facts which will be
true in its final state and at each step in its execution, it be-
comes possible to insert other plan steps at any point during
the thread. For example, consider the following example
from the SETTLERSdomain in the 3rd International Plan-
ning Competition (Long and Fox 2003). We are given a plan
in which two units of stone and wood must be moved from
locationsA andB respectively to locationC by two separate
vehicles, at which point an ironworks will be constructed.
The threads produced byPIMP will correspond to the actions
for cart1 andcart2, as seen in Figure 4. The final action is
applied to the first thread, as both resources will be present
due to dead-head propagation from the shorter thread.

If we assume that the synchronisation point has a strict
start time,cart2 is left with two timesteps to spare. If the
executing system can look foropportunitiesit can recognise
that this would allow for a cabin to be built at locationE,
thus increasing overall resources whilst still adhering tothe
synchronisation deadline.

Algorithm 1 Thread-Graph Generation

Require: plan steps〈a1, a2, ...an〉
heads = {} {set of current plan heads}
dead = {} {set of heads which are of no further use}
heads← I {add default plan head usingI}
plan← plan steps
while !empty(plan) do
{Dictionary (action⇒ head)}
applicable = getApplicableActions(heads, plan)
if |applicable| == 0 then
{find the minimum set of heads that must be merged
in order to apply the next unscheduled action}
next = plan.peek()
minHeads = minimumUnion(heads, next)
heads = mergeHeads(minimalHeads)
continue

end if
{Dictionary (action⇒ head)}
nonMutex = getNonMutexActions(applicable)
newDead = heads \ nonMutex.values
if |newDead| > 0 then
heads = propagateHeads(dead, nonMutex)
dead← newDead
continue

end if
heads = {}
applied = {}
for all action/head mappingm ∈ nonMutex do
{apply action to head to create new head}
newHead = apply(m.key,m.value)
heads← newHead
applied← m.key

end for
plan.removeAll(applied)

end while

4.2 Plan Robustness

Given a thread-graph representation of a plan and the real-
isation that one of the threads executing has failed in some
way, it is possible toreplan only the failing portion of the
thread-graph. This prevents the need to produce another full
plan, something that is often costly and may produce a sub-
optimal version of the previous plan.

As we know the start and end states of the broken thread
TB, we can produce a minimal subset of the original prob-
lem domain in which the initial state is the state prior to the
action which has failedaf and the goal is either the overall
goal achieved by the thread; the final thread state; or the facts
required by the successor thread enabled byTB. The range
of objects available to the replanner is simply the inclusive
union of those used by the actions succeedingaf . Should
this subset of the original domain fail to produce a plan, we
can change the initial state to reflect the overall world-state
at the failure point, and the range of available objects to be
the original domain set.

Algorithm 2 Mutex Filtering

Require: unfiltered - mapping of applicable actions to
heads sorted on action number
filtered = {} {map of non-mutex actions to plan heads}
delayed = {} {set of actions which will not be applied}
paused = {} {subset ofdelayed for paused actions}
for all 〈action, head〉 a ∈ unfiltered do

if a ∈ delayed then
continue

end if
for all actions d ∈ delayed do
{Check mutex and ifd precedesa in original plan}
if (mutexType(a, d) == AdeleteBpc)∧ (dt < at)
then
delayed← a
continue

end if
end for
{Only consider actions which are after a in plan}
for all 〈action, head〉 b ∈ tail(a, unfiltered) do

if b ∈ delayed then
break

end if
mutexType = getMutex(a, b)
if mutexType == ApauseB then
paused← b
delayed← b
break

end if
{if a precedesb, delaya, otherwise delayb}
if at < bt then
delayed← b

else
delayed← a

end if
end for
filtered← a

end for

4.3 Assistive Execution

The advantages of a thread-based plan execution archi-
tecture apply particularly to situations which integrateau-
tonomousagents with ahumanagent. In a traditional real-
time strategy (RTS) game scenario featuring unit/base con-
struction and resource gathering, each player will have their
own plan as to how to achieve their goal which they would
normally endeavour to execute manually. However while
these are an essential part of the overall plan, these tasks are
often trivial and can distract the player from other issues,
such as the problem of mining resources while preparing for
a large-scale onslaught. If the game features an autonomous
lieutenant, these tasks can be transparently passed onto it.
This can be performed by the lieutenant being made explic-
itly aware of the user’s plan or by performinggoal recogni-
tion on the user’s current actions. For instance, if the lieu-
tenant determines that the user is carrying out threadx, it
can choose to execute parallel thready without bothering the

Algorithm 3 Dead Head Propagation

Require: deadHeads, liveHeads
newHeads = {}
for all d ∈ deadHeads do
common = findCommonRoot(d, liveHeads)
for all c ∈ common do
newHead = mergeHeads(d, common)
newHeads← newHead

end for
end for
return newHeads

user, thus streamlining the plan execution while increasing
the perception of intelligence.

4.4 Adversarial Planning
The previous application details how to applyPIMP in a
co-operative, assistive environment, but the same principles
hold for adversarialagents too. If we again take a standard
RTS game with a human player but assume that the oppo-
nent can form its own plans (such as a human or planner-
equippedbot), then it becomes possible torecogniseand
prevent the execution of their plan. For example, if the
goal recognition system suggests that the opponent is try-
ing to destroy the player’s vehicle factory, it is possible to
infer their possible plan which can then be converted into
a thread-graph. It then becomes trivial to detect the weak-
points in their plan execution and prevent the appropriate
steps being achieved. Of course, this can also be applied
in the context of the computer attempting to prevent the
player’s plan execution.

5 Related Work
To the best of our knowledge there has been no prior work in
constructing explicitly linked sub-plans from a fully-formed
or incremental plan. At first glance it may seem that pre-
vious work inscheduling(Smith, Frank, and Jónsson 2000)
may be of use, however as we have no numeric or tempo-
ral resources to share amongst threads it becomes simpler
to assumeSTRIPSplans which only require that mutually-
exclusive facts be known.

Perhaps the closest analogy would be that
of Hierarchical Task Network (HTN) planning
(Nau, Ghallab, and Traverso 2004), in which plans are
computed from high level tasks which decompose into
other tasks and primitive actions. Indeed, the work of
Wissing (2007) uses an HTN planner to create parallel plans
during the execution phase. However, they do not provide a
guarantee of non-overlapping plans1, instead requiring the
HTN architect to take this into account during design.

The construction of sub-plansduring the planning pro-
cess has existed in some form or another for several years.
The authors ofGRAPHPLAN (Blum and Furst 1995) recog-
nised that such a system would be able to optimally de-
tect the minimal set of threads required to achieve a goal-
set, but did not export these individual sub-plans at the

1This is analogous tothreadsin the context of this work.

1

2

load cart1 locA stone

7

load cart2 locA wood

7a

load cart2 locA wood

3

move_cart cart1 locA locB

4

move_cart cart1 locB locC

5

move_cart cart1 locC locD

6

move_cart cart1 locD locZ

11

unload cart1 locZ stone

12

build_ironworks locZ

8

move_cart cart2 locA locE

9

move_cart cart2 locE locZ

10

unload cart2 locZ wood

8a

move_cart cart2 locA locE

9a

build_cabin locE

10a

move_cart cart2 locE locZ

11a

unload cart2 locZ wood

Figure 4: The thread graph for theSETTLERSexample. The
altered thread forcart2 is shown with dotted edges.

end of search. Furthermore, the reality of generating
a full plan graph until stabilisation is beyond the scope
of most non-trivial problems due to the state-space ex-
plosion problem. However, this principle ofgoal de-
compositionduring plan construction has been seen to
be successful in otherforward-chainingplanners such as
SGPLAN (Chen, Wah, and Hsu 2006) and those using the
ADHG heuristic (Coles et al. 2008). Yet, the output of these
planners remains a single list of actions, with all parallel
knowledge discarded.

Elsewhere,partial-order planning(POP) has also seen
a history of detecting and exploiting parallelism in plans.
Knoblock (1994) identifies the class of problems where con-
currency is possible in POP, while our notion of being able
to perform concurrent execution without an explicit rep-
resentation of time is reflected in the work of Boutilier
and Brafman (2001). Their modifications ofUCPOP al-
gorithm (Penberthy and Weld 1992) allow multi-agent plan-
ning problems to be solved in a concurrent manner similar
to that of a single-agent by modifying theSTRIPSrepresen-
tation of actions to include a set of facts which must not hold
in parallel with the chosen action. They also introduce new
flaw resolution techniques to guarantee against destructive-
interactions between concurrent actions.

This work is also related to earlier research

exploring the problem of lifting structure out
of plans (Veloso, Perez, and Carbonell 1990;
Bäckström 1998). Here the problem investigated was
to lift partial ordered plans out of sequential plans
with a minimal set of ordering constraints. The prob-
lem of finding a global minimum set of constraints
is known to be hard (Bäckström 1998), but good
heuristic approaches can achieve very good results
(Veloso, Perez, and Carbonell 1990). However, this differs
from the work reported here in two important respects.
Firstly, the extraction of minimally ordered structures
within plans is a different problem from finding the threads
of activity that we consider here (although there is clearly
a close relationship) and, secondly, the previous work con-
siders the problem starting with the entire plan. In contrast,
in this work we extract structure incrementally. This is an
extremely important difference, since it allows the current
work to be used in an on-line context to analyse plans as
they unfold, step by step, and to identify the structure within
them before they are complete.

6 Conclusion and Future Work

We have presented thePIMP algorithm, which enables the
production of plan threads for parallel execution from an
unscheduled plan featuring concurrent actions. We have de-
tailed the algorithm itself and put forward several applica-
tions of planning which would benefit from knowledge of
threading.

The next step in the evolution of the algorithm is to adapt
the thread-graph produced to explicitly link dead heads with
the actions or threads they enable. For instance, in Figure
4 there would be an explicit arc from state 10 to 11, thus
simplifying the process of detecting thread synchronisation
points which can then be used by other systems such as ad-
versarial agents.

Introduction of an explicit and accurate representation
of time and numbers would allow aspects of PDDL such
as timed initial literals (Edelkamp and Hoffmann 2004) to
be encoded directly into the thread-graph and respective
threads and also aid in plan modification. Integration of
PIMP with a large multi-threaded application such as an RTS
game will provide a concrete example of the technology and
enable rapid integration of the extensions detailed in the pre-
vious section.

Finally, it may be interesting to take the princi-
ple of action links presented in this paper and ap-
ply it to action selection during plan construction. In
particular, POP has in the past shown to be a vi-
able avenue for such links, withcausal links being
used to refine action selection (Penberthy and Weld 1992;
Younes and Simmons 2003). Given the advancements in
planning, the integration of the link detection strategiespre-
sented in this paper may be beneficial to the flaw resolution
process.

References

[Bäckström 1998] Bäckström, C. 1998. Computational as-
pects of reordering plans.J. AI Res.9:99–137.

[Blum and Furst 1995] Blum, A. L., and Furst, M. L. 1995.
Fast planning through planning graph analysis.Artificial
Intelligence90:1636–1642.

[Boutilier and Brafman 2001] Boutilier, C., and Brafman,
R. I. 2001. Partial-order planning with concurrent inter-
acting actions.Journal of Artificial Intelligence Research
14:105–136.

[Chen, Wah, and Hsu 2006] Chen, Y.; Wah, B. W.; and
Hsu, C.-W. 2006. Temporal planning using subgoal parti-
tioning and resolution in SGPlan.J. AI Res.26:323–369.

[Coles et al. 2008] Coles, A.; Fox, M.; Long, D.; and
Smith, A. 2008. Additive-disjunctive heuristics for opti-
mal planning. InProc. Int. Conf. on Automated Planning
and Scheduling, 44–51.

[Edelkamp and Hoffmann 2004] Edelkamp, S., and Hoff-
mann, J. 2004. PDDL2.2: The language for the Classical
part of the 4th International Planning Competition. Tech-
nical Report 195.

[Fikes and Nilsson 1971] Fikes, R., and Nilsson, N. J.
1971. STRIPS: A new approach to the application of the-
orem proving to problem solving. InProc. Int. Joint Conf.
on AI, 608–620.

[Helmert 2009] Helmert, M. 2009. Concise finite-domain
representations for PDDL planning tasks.Artificial Intelli-
gence173(5-6):503–535.

[Kautz 1987] Kautz, H. A. 1987.A formal theory of plan
recognition. Ph.D. Dissertation, University of Rochester.

[Knoblock 1994] Knoblock, C. A. 1994. Generating paral-
lel execution plans with a partial-order planner. InIn Pro-
ceedings of the Second International Conference on Artifi-
cial Intelligence Planning Systems, 98–103.

[Long and Fox 2003] Long, D., and Fox, M. 2003. The 3rd
international planning competition: Results and analysis.
J. AI Res.20:1–59.

[Nau, Ghallab, and Traverso 2004] Nau, D.; Ghallab, M.;
and Traverso, P. 2004.Automated Planning: Theory &
Practice. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

[Penberthy and Weld 1992] Penberthy, J. S., and Weld,
D. S. 1992. UCPOP: A sound, complete, partial order
planner for ADL. 103–114. Morgan Kaufmann.

[Smith, Frank, and Jónsson 2000] Smith, D. E.; Frank, J.;
and Jónsson, A. K. 2000. Bridging the gap between
planning and scheduling.Knowledge Engineering Review
15:2000.

[Veloso, Perez, and Carbonell 1990] Veloso, M. M.; Perez,
M. A.; and Carbonell, J. G. 1990. Nonlinear planning
with parallel resource allocation. InIn Proceedings of the
DARPA Workshop on Innovative Approaches to Planning,
Scheduling, and Control, 207–212. Morgan Kaufmann.

[Wissing 2007] Wissing, G. 2007. Multi-agent planning
using HTN and GOAP. Master’s thesis, LuleåUniversity
of Technology.

[Younes and Simmons 2003] Younes, H. L. S., and Sim-
mons, R. G. 2003. VHPOP: Versatile heuristic partial order
planner.J. AI Res.20:405.

	Introduction
	Problem Definition
	Extracting Threads from Plans
	Graph Construction
	Mutex Detection
	Dead Head Propagation

	Applications
	Opportunities
	Plan Robustness
	Assistive Execution
	Adversarial Planning

	Related Work
	Conclusion and Future Work

