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a b s t r a c t

Recently, Mao (2013) discusses the mean-square exponential stabilization of continuous-time hybrid
stochastic differential equations by feedback controls based on discrete-time state observations. Mao (2013)
also obtains an upper bound on the duration τ between two consecutive state observations. However, it
is due to the general technique used there that the bound on τ is not very sharp. In this paper, we will
consider a couple of important classes of hybrid SDEs. Making full use of their special features, we will
be able to establish a better bound on τ . Our new theory enables us to observe the system state less fre-
quently (so costs less) but still to be able to design the feedback control based on the discrete-time state
observations to stabilize the given hybrid SDEs in the sense of mean-square exponential stability.

© 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Hybrid stochastic differential equations (SDEs) (also known as
SDEs with Markovian switching) have been used to model many
practical systems where they may experience abrupt changes in
their structure and parameters. One of the important issues in
the study of hybrid systems is the automatic control, with conse-
quent emphasis being placed on the asymptotic analysis of stability
[1–19]. In particular, [20,21] are two of most cited papers (Google
citations 447 and 269, respectively) while [22] is the first book in
this area (Google citation 496).

Recently, Mao [23] investigates the following stabilization
problem by a feedback control based on the discrete-time state ob-
servations: consider an unstable hybrid SDE

dx(t) = f (x(t), r(t), t)dt + g(x(t), r(t), t)dw(t), (1)

where x(t) ∈ Rn is the state, w(t) = (w1(t), . . . , wm(t))T is an
m-dimensional Brownian motion, r(t) is a Markov chain (please
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see Section 2 for the formal definitions) which represents the sys-
tem mode, and the SDE is in the Itô sense. The aim is to design a
feedback control u(x([t/τ ]τ), r(t), t) in the drift part so that the
controlled system

dx(t) =

f (x(t), r(t), t) + u(x([t/τ ]τ), r(t), t)


dt

+ g(x(t), r(t), t)dw(t) (2)

becomes stable, where τ > 0 is a constant and [t/τ ] is the inte-
ger part of t/τ . The key feature here is that the feedback control
u(x([t/τ ]τ), r(t), t) is designed based on the discrete-time ob-
servations of the state x(t) at times 0, τ , 2τ , . . . . This is sig-
nificantly different from the stabilization by a continuous-time
(regular) feedback control u(x(t), r(t), t), based on the current
state, where the aim is to design u(x(t), r(t), t) in order for the
controlled system

dx(t) =

f (x(t), r(t), t) + u(x(t), r(t), t)


dt

+ g(x(t), r(t), t)dw(t) (3)

to be stable. In fact, the regular feedback control requires the
continuous observations of the state x(t) for all t ≥ 0, while the
feedback control u(x([t/τ ]τ), r(t), t) needs only the discrete-time
observations of the state x(t) at times 0, τ , 2τ , . . . . The latter is
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clearly more realistic and costs less in practice. To the best knowl-
edge of the authors, Mao [23] is the first paper that studies this sta-
bilization problemby feedback controls based on the discrete-time
state observations in the area of SDEs, although the corresponding
problem for the deterministic differential equations has been stud-
ied by many authors (see e.g. [24–28]).

Mao [23] shows that if continuous-time controlled SDE (3) is
mean-square exponentially stable, then so is the discrete-time-
state feedback controlled system (2) provided that τ is sufficiently
small. This is of course a very general result. However, it is due to
the general technique used there that the bound on τ is not very
sharp. In this paper, we will consider a couple of important classes
of hybrid SDEs. Making full use of their special features, we will be
able to establish a better bound on τ .

Mathematically speaking, the key technique in Mao [23] is to
compare the discrete-time-state feedback controlled system (2)
with the continuous-time controlled SDE (3) and then prove the
stability of system (2) by making use of the stability of SDE (3).
However, in this paper, wewill work directly on the discrete-time-
state feedback controlled system (2) itself. To cope with the mix-
ture of the continuous-time state x(t) and the discrete-time state
x([t/τ ]τ) in the system, we have developed some new techniques.
Let us begin to develop these new techniques and to establish our
new theory.

2. Notation and stabilization problem

Throughout this paper, unless otherwise specified, we let
(Ω, F , {Ft}t≥0, P) be a complete probability spacewith a filtration
{Ft}t≥0 satisfying the usual conditions (i.e. it is right continuous
and F0 contains all P-null sets). Let w(t) = (w1(t), . . . , wm(t))T
be an m-dimensional Brownian motion defined on the probability
space. If A is a vector or matrix, its transpose is denoted by AT . If
x ∈ Rn, then |x| is its Euclidean norm. If A is a matrix, we let |A| =
trace(ATA) be its trace norm and ∥A∥ = max{|Ax| : |x| = 1}

be the operator norm. If A is a symmetric matrix (A = AT ), de-
note by λmin(A) and λmax(A) its smallest and largest eigenvalues,
respectively. By A ≤ 0 and A < 0, we mean A is non-positive and
negative definite, respectively. Denote by L2Ft

(Rn) the family of all
Ft-measurable Rn-valued random variables ξ such that E|ξ |

2 <
∞, whereE is the expectationwith respect to the probabilitymea-
sure P. If both a, b are real numbers, then a ∨ b = min{a, b} and
a ∧ b = max{a, b}. Let r(t), t ≥ 0, be a right-continuous Markov
chain on the probability space taking values in a finite state space
S = {1, 2, . . . ,N} with generator Γ = (γij)N×N given by

P{r(t + ∆) = j|r(t) = i} =


γij∆ + o(∆) if i ≠ j,
1 + γii∆ + o(∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j if i ≠ j
while

γii = −


j≠i

γij.

We assume that theMarkov chain r(·) is independent of the Brow-
nian motion w(·). It is known that almost all sample paths of r(t)
are constant except for a finite number of simple jumps in any fi-
nite subinterval of R+ (:= [0, ∞)).We stress that almost all sample
paths of r(t) are right continuous.

Consider an n-dimensional linear hybrid SDE

dx(t) = A(r(t))x(t)dt +

m
k=1

Bk(r(t))x(t)dwk(t) (4)

on t ≥ 0, with initial data x(0) = x0 ∈ L2F0
(Rn). Here A, Bk : S →

Rn×n and we will often write A(i) = Ai and Bk(i) = Bki. Suppose
that this given equation is unstable and we are required to design
a feedback control u(x(δ(t)), r(t)) based on the discrete-time state

observations in the drift part so that the controlled SDE

dx(t) = [A(r(t))x(t) + u(x(δ(t)), r(t))]dt

+

m
k=1

Bk(r(t))x(t)dwk(t) (5)

will be mean-square exponentially stable, where u is a mapping
from Rn

× S to Rn, τ > 0 and

δ(t) = [t/τ ]τ for t ≥ 0, (6)

in which [t/τ ] is the integer part of t/τ . We repeat that the feed-
back control u(x(δ(t)), r(t)) is designed based on the discrete-time
state observations x(0), x(τ ), x(2τ), . . . , though the given hybrid
SDE (4) is of continuous time. As the given SDE (4) is linear, it is nat-
ural to use a linear feedback control. One of the most common lin-
ear feedback controls is the structure control of the form u(x, i) =

F(i)G(i)x, where F and G are mappings from S to Rn×l and Rl×n, re-
spectively, and one of them is given while the other needs to be
designed. These two cases are known as:

• State feedback: design F(·) when G(·) is given.
• Output injection: design G(·) when F(·) is given.

Again, we will often write F(i) = Fi and G(i) = Gi. As a result,
controlled system (5) becomes

dx(t) = [A(r(t))x(t) + F(r(t))G(r(t))x(δ(t))]dt

+

m
k=1

Bk(r(t))x(t)dwk(t). (7)

We observe that Eq. (7) is in fact a stochastic differential delay
equation (SDDE) with a bounded variable delay. Indeed, if we de-
fine the bounded variable delay ζ : [0, ∞) → [0, τ ] by

ζ (t) = t − vτ for vτ ≤ t < t(v + 1)τ , (8)

and v = 0, 1, 2, . . . , then Eq. (7) can be written as

dx(t) = [A(r(t))x(t) + F(r(t))G(r(t))x(t − ζ (t))]dt

+

m
k=1

Bk(r(t))x(t)dwk(t). (9)

It is therefore known (see e.g. [22]) that Eq. (7) has a unique solu-
tion x(t) such that E|x(t)|2 < ∞ for all t ≥ 0.

3. Main results

In this section, we will first write F(r(t))G(r(t)) = D(r(t)) and
establish the stability theory for the following hybrid SDE

dx(t) = [A(r(t))x(t) + D(r(t))x(δ(t))]dt

+

m
k=1

Bk(r(t))x(t)dwk(t). (10)

Wewill then design eitherG(·) given F(·) or F(·) givenG(·) in order
for controlled SDE (7) to be stable.

3.1. Stability of SDE (10)

Let us begin with a useful lemma.

Lemma 3.1. Set

MA = max
i∈S

∥Ai∥
2, MD = max

i∈S
∥Di∥

2,

MB = max
i∈S

m
k=1

∥Bki∥
2,
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and define

K(τ ) = [6τ(τMA + MB) + 3τ 2MD]e6τ(τMA+MB) (11)

for τ > 0. If τ is sufficiently small for 2K(τ ) < 1, then the solution
x(t) of SDE (10) satisfies

E|x(t) − x(δ(t))|2 ≤
2K(τ )

1 − 2K(τ )
E|x(t)|2 (12)

for all t ≥ 0.

Proof. Fix any integer v ≥ 0. For t ∈ [vτ , (v + 1)τ ), we have
δ(t) = vτ . It follows from (10) that

x(t) − x(δ(t)) = x(t) − x(vτ)

=

 t

vτ

[A(r(s))x(s) + D(r(s))x(vτ)]ds

+

m
k=1

 t

vτ

Bk(r(s))x(s)dwk(s).

We can then derive

E|x(t) − x(δ(t))|2

≤ 3(τMA + MB)

 t

vτ

E|x(s)|2ds + 3τ 2MDE|x(kτ)|2

≤ 6(τMA + MB)

 t

vτ

E|x(s) − x(δ(s))|2ds

+ [6τ(τMA + MB) + 3τ 2MD]E|x(vτ)|2.

The well-known Gronwall inequality shows

E|x(t) − x(δ(t))|2 ≤ K(τ )E|x(vτ)|2.

Consequently

E|x(t) − x(δ(t))|2 ≤ 2K(τ )


E|x(t) − x(δ(t))|2 + E|x(t)|2

.

This implies that (12) holds for t ∈ [vτ , (v + 1)τ ). But v ≥ 0 is ar-
bitrary so desired assertion (12) must hold for all t ≥ 0. The proof
is complete. �

Theorem 3.2. Assume that there are symmetric positive-definite
matrices Q (i) = Qi (i ∈ S) such that

Q̄ (i) = Q̄i := Qi(Ai + Di) + (Ai + Di)
TQi

+

m
k=1

BT
kiQiBki +

N
j=1

γijQj (13)

are all negative-definite matrices. Set

−λ := max
i∈S

λmax(Q̄i) and MQD = max
i∈S

∥QiDi∥
2

(and of course λ > 0). If τ is sufficiently small for λ > 2λτ , where

λτ :=


2MQDK(τ )

1 − 2K(τ )
, (14)

then the solution of SDE (10) satisfies

E|x(t)|2 ≤
λM

λm
E|x0|2e−θ t , ∀t ≥ 0, (15)

where λM = maxi∈S λmax(Qi), λm = mini∈S λmin(Qi), K(τ ) has been
defined in Lemma 3.1 and

θ =
λ − 2λτ

λM
. (16)

In other words, SDE (10) is exponentially stable in mean square.

Proof. Applying the generalized Itô formula (see e.g. [22, Theorem
1.14 on page 48]) to xT (t)Q (r(t))x(t) we get

d[xT (t)Q (r(t))x(t)]

=


2xT (t)Q (r(t))[A(r(t))x(t) + D(r(t))x(δ(t))]

+

m
k=1

xT (t)BT
k (r(t))Q (r(t))Bk(r(t))x(t)

+

N
j=1

γr(t),jxT (t)Qjx(t)

dt + dM1(t)

=


xT (t)Q̄ (r(t))x(t)

− 2xT (t)Q (r(t))D(r(t))(x(t) − x(δ(t)))

dt + dM1(t).

HereM1(t) and the followingM2(t) are martingales withM1(0) =

M2(0) = 0. Their forms are not used so are not specified here aswe
will take expectations later and their means are zero. Applying the
generalized Itô formula now to eθ txT (t)Q (r(t))x(t), we then have

d[eθ txT (t)Q (r(t))x(t)]

= eθ t

θxT (t)Q (r(t))x(t) + xT (t)Q̄ (r(t))x(t)

−2xT (t)Q (r(t))D(r(t))(x(t) − x(δ(t)))

dt + dM2(t).

This implies

λmeθ tE|x(t)|2 ≤ λME|x0|2 +

 t

0
(θλM − λ)eθsE|x(s)|2ds

+

 t

0
2eθs


MQD E(|x(s)||x(s) − x(δ(s))|)ds. (17)

But, by Lemma 3.1, we have

2

MQD E(|x(s)||x(s) − x(δ(s))|)

≤ λτ E|x(s)|2 +
MQD

λτ

E|x(s) − x(δ(s))|2

≤ λτ E|x(s)|2 +
MQD

λτ

2K(τ )

1 − 2K(τ )
E|x(t)|2

= 2λτ E|x(s)|2. (18)

Substituting this into (17) yields

λmeθ tE|x(t)|2 ≤ λME|x0|2 +

 t

0
(θλM + 2λτ − λ)eθsE|x(s)|2ds.

But, by (16), θλM + 2λτ − λ = 0. Thus

λmeθ tE|x(t)|2 ≤ λME|x0|2,

which implies desired assertion (15). The proof is complete. �

3.2. State feedback: design F(·) when G(·) is given

We can now begin to consider the case of state feedback. In this
case, G(·) is given so our aim is to design F(·) such that controlled
SDE (7) is exponentially stable inmean square. One technique used
frequently in the study of stability of linear SDEs is the method
of linear matrix inequalities (LMIs) (see e.g. [29–32,10]), although
there are other methods (see e.g. the survey paper [33]). We will
use the technique of LMIs to design F(·) in this section.

According to Theorem 3.2, it is sufficient if we can design G(·),
namely Gi for i ∈ S, so that we can further find positive-definite
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symmetric matrices Qi (i ∈ S) in order for

Qi(Ai + FiGi) + (Ai + FiGi)
TQi

+

m
k=1

BT
kiQiBki +

N
j=1

γijQj < 0, i ∈ S. (19)

We observe that the above matrix inequalities are not linear in Qi
and Fi’s. However, if we set Yi = QiFi, then they become the follow-
ing LMIs

QiAi + YiGi + AT
i Qi + GT

i Y
T
i

+

m
k=1

BT
kiQiBki +

N
j=1

γijQj < 0, i ∈ S. (20)

If these LMIs have their solutions Qi = Q T
i > 0 and Yi (i ∈ S), then,

setting Fi = Q−1
i Yi, we have (19). Applying Theorem 3.2, we hence

obtain the following corollary.

Corollary 3.3. Assume that the LMIs in (20) have their solutions Qi =

Q T
i > 0 and Yi. Set Fi = Q−1

i Yi and Di = FiGi. Then the conclusion
of Theorem 3.2 holds. In other words, controlled SDE (7)will be expo-
nentially stable in mean square if we set Fi = Q−1

i Yi and make sure
τ > 0 be sufficiently small for λ > 2λτ .

3.3. Output injection: design G(·) when F(·) is given

Let us now consider the case of output injection. In this case,
F(·) is given and our aim is to design G(·) so that controlled SDE (7)
is exponentially stable in mean square. Once again, based on The-
orem 3.2, it is sufficient if we can design F(·), namely Fi for i ∈ S,
so that we can further find positive-definite symmetric matrices
Qi (i ∈ S) in order for matrix inequalities (19) to hold. Multiplying
Q−1
i from left and then from right, and writing Q−1

i = Xi, we see
thatmatrix inequalities (19) are equivalent to the followingmatrix
inequalities

AiXi + FiGiXi + XiAT
i + XiGT

i F
T
i +

m
k=1

XiBT
kiX

−1
i BkiXi

+

N
j=1

γijXiX−1
j Xi < 0, i ∈ S. (21)

By setting GiXi = Yi, these matrix inequalities become

AiXi + FiYi + XiAT
i + Y T

i F
T
i + γiiXi +

m
k=1

XiBT
kiX

−1
i BkiXi

+

N
j≠i

γijXiX−1
j Xi < 0, i ∈ S. (22)

By the well-known Schur complements (see [22, Theorem 2.8 on
page 64]), we see these matrix inequalities are equivalent to the
following LMIsMi1 Mi2 Mi3

MT
i2 −Mi4 0

MT
i3 0 −Mi5

 < 0, i ∈ S, (23)

where

Mi1 = AiXi + FiYi + XiAT
i + Y T

i F
T
i + γiiXi,

Mi2 = [XiBT
1i, . . . , XiBT

mi],

Mi3 = [
√

γi1Xi, . . . ,
√

γi(i−1)Xi,
√

γi(i+1)Xi, . . . ,
√

γiNXi],

Mi4 = diag[Xi, . . . , Xi],

Mi5 = diag[X1, . . . , Xi−1, Xi+1, . . . , XN ].

In other words, if the LMIs in (23) have their solutions Xi = XT
i > 0

and Yi (i ∈ S), then, settingQi = X−1
i and Gi = YiX−1

i , we have (19).
Applying Theorem 3.2, we hence obtain the following corollary.

Corollary 3.4. Assume that the LMIs in (23) have their solutions Xi =

XT
i > 0 and Yi (i ∈ S). Set Qi = X−1

i and Gi = YiX−1
i . Then the con-

clusion of Theorem 3.2 holds. In other words, controlled SDE (7) will
be exponentially stable inmean square if we set Gi = YiX−1

i andmake
sure τ > 0 be sufficiently small for λ > 2λτ .

4. Stabilization of nonlinear hybrid SDEs

Let us now discuss a more general nonlinear problem. Assume
that the underlying system is now described by a nonlinear hybrid
SDE
dx(t) = f (x(t), r(t), t)dt + g(x(t), r(t), t)dw(t) (24)
on t ≥ 0 with the initial data x(0) = x0 ∈ L2F0

(Rn). Here, f : Rn
×

S × R+ → Rn and g : Rn
× S × R+ → Rn×m. Assume that both f

and g are locally Lipschitz continuous and obey the linear growth
condition (see e.g. [22]). We also assume that f (0, i, t) = 0 and
g(0, i, t) = 0 for all i ∈ S and t ≥ 0 so that x = 0 is an equilibrium
point for (24).

Suppose that the given SDE (24) is unstable andwe are required
to design a linear feedback control F(r(t))G(r(t))x(δ(t)) based on
the discrete-time state observations in the drift part so that the
controlled system
dx(t) = [f (x(t), r(t), t) + F(r(t))G(r(t))x(δ(t))]dt

+ g(x(t), r(t), t)dw(t) (25)
will be mean-square exponentially stable. Recalling the definition
of ζ by (8), we see that SDE (25) can be written as an SDDE
dx(t) = [f (x(t), r(t), t) + F(r(t))G(r(t))x(t − ζ (t))]dt

+ g(x(t), r(t), t)dw(t). (26)
It is therefore known (see e.g. [22]) that Eq. (25) has a unique
solution x(t) such that E|x(t)|2 < ∞ for all t ≥ 0.

Given that we use a linear control to stabilize a nonlinear sys-
tem, it is natural to impose some conditions on the nonlinear coef-
ficients f and g .

Assumption 4.1. For each i ∈ S, there is a pair of symmetric n×n-
matrices Qi and Q̂i with Qi being positive-definite such that

2xTQif (x, i, t) + gT (x, i, t)Qig(x, i, t) ≤ xT Q̂ix

for all (x, i, t) ∈ Rn
× S × R+.

Assumption 4.2. There is a pair of positive constants δ1 and δ2
such that

|f (x, i, t)|2 ≤ δ1|x|2 and |g(x, i, t)|2 ≤ δ2|x|2

for all (x, i, t) ∈ Rn
× S × R+.

Let us first present a useful lemma.

Lemma 4.3. Let Assumption 4.2 hold. Set

δ3 = max
i∈S

m
k=1

∥FiGi∥
2,

and define

H(τ ) = [6τ(τδ1 + δ2) + 3τ 2δ3]e6τ(τδ1+δ2) (27)

for τ > 0. If τ is sufficiently small for 2H(τ ) < 1, then the solution
x(t) of SDE (25) satisfies

E|x(t) − x(δ(t))|2 ≤
2H(τ )

1 − 2H(τ )
E|x(t)|2 (28)

for all t ≥ 0.
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This lemma can be proved in the same way as Lemma 3.1 was
proved so we omit the proof.

Theorem 4.4. Let Assumptions 4.1 and 4.2 hold. Assume that the
following LMIs

Ui := Q̂i + QiFiGi + GT
i F

T
i Qi +

N
j=1

γijQj < 0, i ∈ S, (29)

have their solutions Fi (i ∈ S) in the case of feedback control (i.e. Gi’s
are given) or their solutions Gi in the case of output injection (i.e. Fi’s
are given). Set

−γ := max
i∈S

λmax(Ui) and δ4 = max
i∈S

∥QiFiGi∥
2.

If τ is sufficiently small for γ > 2γτ , where

γτ :=


2δ4H(τ )

1 − 2H(τ )
, (30)

then the solution of SDE (25) satisfies

E|x(t)|2 ≤
λM

λm
E|x0|2e−θ t , ∀t ≥ 0, (31)

where λM = maxi∈S λmax(Qi), λm = mini∈S λmin(Qi), H(τ ) has been
defined in Lemma 4.3 and

θ =
γ − 2γτ

λM
. (32)

Proof. This theorem can be proved in a similarway as Theorem3.2
was proved sowe only give the key steps. Applying the generalized
Itô formula to xT (t)Q (r(t))x(t) we get

d[xT (t)Q (r(t))x(t)] =


xT (t)U(r(t))x(t)

− 2xT (t)Q (r(t))F(r(t))G(r(t))(x(t) − x(δ(t)))

dt + dM3(t),

whereM3(t) is amartingalewithM3(0) = 0. Applying the general-
ized Itô formula further to eθ txT (t)Q (r(t))x(t), we can then obtain

λmeθ tE|x(t)|2 ≤ λME|x0|2 +

 t

0
(θλM − γ )eθsE|x(s)|2ds

+

 t

0
2eθs


δ4 E(|x(s)||x(s) − x(δ(s))|)ds. (33)

But, by Lemma 4.3, we can show

2


δ4 E(|x(s)||x(s) − x(δ(s))|) ≤ 2γτ E|x(s)|2. (34)

Substituting this into (33) yields

λmeθ tE|x(t)|2 ≤ λME|x0|2,

which implies desired assertion (31). The proof is complete. �

To apply Theorem 4.4, we need two steps:

1 we first need to look for the 2N matrices Qi and Q̂i for Assump-
tion 4.1 to hold;

2 we then need to solve the LMIs in (29) for their solutions Fi
(or Gi).

There are available computer softwares e.g. Matlab for step 2 so in
the remaining part of this section we will develop some ideas for
step 1. To make our ideas more clear, we will only consider the case
of feedback control, but the same ideas work for the case of output
injection.

In theory, it is flexible to use 2N matrices Qi and Q̂i in Assump-
tion 4.1. But, in practice, it means more work to be done in finding
these 2N matrices. It is in this spirit that we introduce a stronger
assumption.

Assumption 4.5. There are N +1 symmetric n×n-matrices Z and
Zi (i ∈ S) with Z > 0 such that

2xTZf (x, i, t) + gT (x, i, t)Zg(x, i, t) ≤ xTZix

for all (x, i, t) ∈ Rn
× S × R+.

Under this assumption, if we let Qi = qiZ and Q̂i = qiZi for
some positive numbers qi, then Assumption 4.1 holds. Moreover,
the LMIs in (29) become

qiZi + qiZFiGi + qiGT
i F

T
i Z +

N
j=1

γijqjZ < 0, i ∈ S.

If we set Yi := qiFi, then these become the following LMIs in qi
and Yi:

qiZi + ZYiGi + GT
i Y

T
i Z +

N
j=1

γijqjZ < 0, i ∈ S. (35)

We hence have the following corollary.

Corollary 4.6. Let Assumptions 4.2 and 4.5 hold. Assume that the
LMIs in (35) have their solutions qi > 0 and Yi (i ∈ S). Then The-
orem 4.4 holds by setting Qi = qiZ, Q̂i = qiZi and Fi = q−1

i Yi. In
other words, controlled SDE (25)will be exponentially stable in mean
square if we set Fi = q−1

i Yi and make sure τ > 0 be sufficiently small
for γ > 2γτ .

An even simpler (but in fact stronger) condition is as follows.

Assumption 4.7. There are constants zi (i ∈ S) such that

2xT f (x, i, t) + |g(x, i, t)|2 ≤ zi|x|2

for all (x, i, t) ∈ Rn
× S × R+.

Under this assumption, if we let Qi = qiI and Q̂i = qiziI for some
positive numbers qi, where I is the n × n identity matrix, then
Assumption 4.1 holds. Moreover, the LMIs in (29) become

qiziI + qiFiGi + qiGT
i F

T
i +

N
j=1

γijqjI < 0, i ∈ S.

If we set Yi := qiFi, then these become the following LMIs in qi
and Yi:

qiziI + YiGi + GT
i Y

T
i +

N
j=1

γijqjI < 0, i ∈ S. (36)

We hence have another corollary.

Corollary 4.8. Let Assumptions 4.2 and 4.7 hold. Assume that the
LMIs in (36) have their solutions qi > 0 and Yi (i ∈ S). Then The-
orem 4.4 holds by setting Qi = qiI , Q̂i = qiziI and Fi = q−1

i Yi. In
other words, controlled SDE (25)will be exponentially stable in mean
square if we set Fi = q−1

i Yi and make sure τ > 0 be sufficiently small
for γ > 2γτ .

5. Examples

Let us now discuss some examples to illustrate our theory.

Example 5.1. Let us first consider the same example as discussed
in Mao [23], namely the linear hybrid SDE

dx(t) = A(r(t))x(t)dt + B(r(t))x(t)dw(t) (37)

on t ≥ t0. Here w(t) is a scalar Brownian motion; r(t) is a Markov
chain on the state space S = {1, 2} with the generator

Γ =


−1 1
1 −1


;
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Fig. 5.1. Computer simulation of the paths of r(t), x1(t) and x2(t) for the hybrid SDE (37) using the Euler–Maruyamamethodwith step size 10−6 and initial values r(0) = 1,
x1(0) = −2 and x2(0) = 1.

and the system matrices are

A1 =


1 −1
1 −5


, A2 =


−5 −1
1 1


,

B1 =


1 1
1 −1


, B2 =


−1 −1
−1 1


.

SDE (37)may be regarded as a systemwhich switches between two
operationmodes, saymode 1 andmode 2, and the switching obeys
the law of the Markov chain, where in mode 1, the system evolves
according to the SDE

dx(t) = A1x(t)dt + B1x(t)dw(t),

while in mode 2, according to the other SDE

dx(t) = A2x(t)dt + B2x(t)dw(t).

The computer simulation (Fig. 5.1) shows that this hybrid SDE is
notmean-square exponentially stable. (The simulation of the paths
is sufficient to illustrate since it is known that the mean-square
exponential stability implies the almost sure exponential stabil-
ity [22].)

Let us now design a discrete-time-state feedback control to sta-
bilize the system. Assume that the controlled hybrid SDE has the
form

dx(t) = [A(r(t))x(t) + F(r(t))G(r(t))x(δ(t))]dt
+ B(r(t))x(t)dw(t), (38)

where

G1 = (1, 0), G2 = (0, 1).

Our aim here is to seek for F1 and F2 in R2×1 and then make sure
τ is sufficiently small for this controlled SDE to be exponentially
stable in mean square. To apply Corollary 3.3, we first find that the
following LMIs

Q̄i := QiAi + YiGi + AT
i Qi + GT

i Y
T
i + BT

i QiBi

+

2
j=1

γijQj < 0, i = 1, 2,

have the following set of solutions Q1 = Q2 = I (the 2× 2 identity
matrix) and

Y1 =


−10
0


, Y2 =


0

−10


,

and for these solutions we have

Q̄1 =


−16 0

0 −8


, Q̄2 =


−8 0
0 −16


.

Hence, we have

−λ = max
i=1,2

λmax(Q̂i) = −8, MYG = max
i=1,2

∥YiGi∥
2

= 100.

To determine λτ , we compute

MA = 27.42, MB = 2, MD = 100, MQD = 100.

Hence

λτ =


200K(τ )

1 − 2K(τ )
,

where K(τ ) = [6τ(27.42τ + 2) + 300τ 2
]e6τ(27.42τ+2). It is easy to

show that λ > 2λτ whenever τ < 0.0046. By Corollary 3.3, if we
set F1 = Y1 and F2 = Y2 and make sure that τ < 0.0046, then the
discrete-time-state feedback controlled hybrid SDE (38) is mean-
square exponentially stable. The computer simulation (Fig. 5.2)
supports this result clearly. It should be pointed out that it is re-
quired for τ < 0.0000308 in Mao [23], while applying our new
theory we only need τ < 0.0046. In other words, our new theory
has improved the existing result significantly.

Example 5.2. Let us nowdiscuss onemore example,wherewewill
not only illustrate our theory but also explain a new concept which
may motivate a further research.

Let r(t), t ≥ 0, be a right-continuousMarkov chain on the prob-
ability space taking values in the state space S = {1, 2} with gen-
erator

Γ =


−γ12 γ12

γ21 −γ21


,

where both γ12 > 0 and γ21 > 0. Consider an unstable nonlinear
hybrid SDE

dx(t) = f (x(t), r(t), t)dt + g(x(t), r(t), t)dw(t). (39)
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Fig. 5.2. Computer simulation of the paths of r(t), x1(t) and x2(t) for the controlled hybrid SDE (38) with τ = 10−3 using the Euler–Maruyama method with step size 10−6

and initial values r(0) = 1, x1(0) = −2 and x2(0) = 1.

Here, f and g are both mappings from Rn
× S × R+ to Rn. This SDE

may be regarded as a system which switches between two opera-
tion modes, say mode 1 and mode 2, and the switching obeys the
law of the Markov chain, where in mode 1, the system evolves ac-
cording to the SDE

dx(t) = f (x(t), 1, t)dt + g(x(t), 1, t)dw(t),

while in mode 2, according to the other SDE

dx(t) = f (x(t), 2, t)dt + g(x(t), 2, t)dw(t).

Assume that in mode 1, the state x(t) can be observed at dis-
crete times (intermittent time instants) but in mode 2, it is not
observable. Therefore, we can design a feedback control based on
discrete-time observations of the state in mode 1, but we cannot
have a feedback control in mode 2. In terms of mathematics, the
controlled SDE is

dx(t) = [f (x(t), r(t), t) + F(r(t))G(r(t))x(δ(t))]dt
+ g(x(t), r(t), t)dw(t), (40)

where G1 = I , the n × n identity matrix but G2 = 0. Given G2 = 0
we can simply set F2 = 0. Hence, the stabilization problem be-
comes: can we find a matrix F1 ∈ Rn×n so that the controlled SDE
(40) becomes exponentially stable in mean square?

To give a positive answer to the question, we assume that f
and g obey Assumptions 4.2 and 4.5, respectively. To apply Corol-
lary 4.6, we only need to look for the solutions q1, q2 > 0 and Y1 ∈

Rn×n to the following LMIs

q1Z1 + ZY1 + Y T
1 Z − γ12q1Z + γ12q2Z < 0 (41)

and

q2Z2 + γ21q1Z − γ21q2Z < 0. (42)

It is easy to see from (42) that we have to assume

Z2 − γ21Z < 0. (43)

This means that the rate at which the system switches from the
unobservable mode 2 to the observable mode 1 should be suf-
ficiently large. This is reasonable because the system in mode 2

is not controllable while it is controllable (hence stabilizable) in
mode 1. Let us now choose q1 = 1. Under condition (43), we can
further choose

q2 >
γ21λmax(Z)

λmin(γ21Z − Z2)
(44)

for (42) to hold. Finally, we can choose Y1 to be symmetric for

q1Z1 + 2ZY1 − γ12q1Z + γ12q2Z = −I, (45)

where I is the n × n identity matrix. That is, we set

Y1 = 0.5Z−1(−I − q1Z1 + γ12(q1 − q2)Z), (46)

which guarantees (41). Let us summarize what we have so far: un-
der condition (43), we can choose q1 = 1 and q2 sufficiently large
for (44) to hold and then compute Y1 by (46) and set F1 = Y1.

To determine τ , we note that δ3 = δ4 = ∥F1∥2. We then com-
pute

−γ = max
i=1,2

λmax(Ui),

where

U1 = −I, U2 = q2Z2 + γ21(1 − q2)Z .

Finally, make sure that τ > 0 is sufficiently small for 2γτ < γ ,
where γτ can be computed by (27) and (30). Then, by Corollary 4.6,
controlled system (40) is exponentially stable in mean square.

6. Conclusions and further comments

In this paper we first show that unstable linear hybrid SDEs can
be stabilized by the linear feedback controls based on the discrete-
time state observations. We then generalize the theory to a class
of nonlinear hybrid SDEs. Making full use of their special features,
we have established a better bound on τ and this is supported
particularly by Example 5.1. Of course, the bound on τ obtained
in this paper is certainly not optimal. It is a challenge to obtain the
optimal bound, even in the linear case.

The theory established works well for linear hybrid SDEs or a
class of nonlinear hybrid SDEs which satisfy Assumptions 4.1 and
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4.2. These assumptions are somehow restrictive. It is useful and
interesting to replace these by weaker conditions. Moreover, we
assume in this paper that the mode r(t) is available for all time
although we only require the state x(t) to be available at discrete
times. This is the case, for example, when hybrid SDEs are used to
model electric power systems [34] and the evasive target tracking
problem [3]. On the other hand, one may consider the case when
the mode r(t) is available at discrete times while the state x(t) is
available for all time. However, due to the page limit here, we will
report these results elsewhere.
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