Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Wave enhancement due to blockage in semi-submersible and TLP structures

Yilmaz, O. and Incecik, A. and Barltrop, N. (2001) Wave enhancement due to blockage in semi-submersible and TLP structures. Ocean Engineering, 28 (5). pp. 471-490. ISSN 0029-8018

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

An exact analytical method is described to solve the diffraction problem of a group of truncated vertical cylinders. In order to account for the interaction between the cylinders, Kagemoto and Yue's exact algebraic method is utilised (Kagemoto, H., Yue, D.K.P., 1986. Interactions among multiple three-dimensional bodies in water waves: an exact algebraic method. J Fluid Mech, 46, 129-139). The isolated cylinder diffraction potential is obtained using Garret's solution and evanescent mode solutions are derived in a similar manner (Garret, C.J.R., 1971. Wave forces on a circular dock. J Fluid Mech, 46, 129-139). Free surface elevations are calculated for an array of four cylinders and compared with experiments. Comparisons show good agreement.