Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Numerical instability in linearized planing problems

Wang, Xuelian and Day, Alexander H. (2007) Numerical instability in linearized planing problems. International Journal for Numerical Methods in Engineering, 70 (7). pp. 840-875. ISSN 0029-5981

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The hydrodynamics of planing ships are studied using a finite pressure element method. In this method, a boundary value problem (BVP) is formulated based on linear planing theory; the planing ship is represented by the pressure distribution acting on the wetted bottom of the ship, and the magnitude of this pressure distribution is evaluated using a boundary element method. The pressure is discretized using overlapping pressure pyramids, known as tent functions, so that the resulting distribution is piece-wise continuous in both longitudinal and transverse directions. A set of linear algebraic equations for the determination of the pressure is then established using a collocation technique. It is found that the matrix of the linear equations is ill conditioned; this leads to oscillatory behaviour of the predicted pressure distribution if the direct solution method of LU decomposition or Gaussian elimination is used to solve the system of linear equations. In the current study, this numerical instability is analysed in detail. It is found that the problem can be addressed by adopting singular value decomposition (SVD) technique for the solution of the linear equations. Using this method, the hydrodynamic results for flat-bottomed and prismatic planing ships are calculated and a good agreement is demonstrated with Savitsky's empirical relations.