Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Pattern recognition on diesel engine working conditions by Wavelet Kullback-Leibler distance method

Zhou, P. and Li, H. and Clelland, D. (2005) Pattern recognition on diesel engine working conditions by Wavelet Kullback-Leibler distance method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 219 (9). pp. 879-887. ISSN 0954-4062

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This article introduces a novel pattern recognition and fault diagnosis method for diesel engines. The method is developed from engine vibration signal analysis in combination with wavelet and Kullback-Leibler distance (KLD) approaches. The new approach is termed wavelet Kullback-Leibler distance (WKLD). Experimental data relating to piston and cylinder liner wear obtained from a production diesel engine are used to evaluate the newly developed method. A good agreement between the experimental data and the WKLD estimation is found. The results of this article suggest that WKLD is an advancement on the methods which have been currently developed for pattern recognition and fault diagnosis of diesel engines.