
A Protocol For Storage Limitations and Upgrades in
Decentralised Networks

Greig Paul
University of Strathclyde

Department of Electronic & Electrical
Engineering

Glasgow, United Kingdom
greig.paul@strath.ac.uk

James Irvine
University of Strathclyde

Department of Electronic & Electrical
Engineering

Glasgow, United Kingdom
j.m.irvine@strath.ac.uk

ABSTRACT
Within the MaidSafe distributed network, users are able to
store mutable and immutable data, which will remain ac-
cessible on the network in a distributed hash table, essen-
tially forever. This raises an obvious question as to how to
restrict malicious parties from making use of excessive net-
work resources, in order to ensure the storage capacity of the
network is not quickly depleted by a small number of users
making excessive use of storage. Such activity risks prevent-
ing legitimate use of the network. This paper explores two
possible means of secure storage quota management on such
a decentralised network, and presents the concept of man-
ager verification. It then presents a protocol-based solution
to allow users to purchase extra storage from other users in a
decentralised network, with irrepudiable and non-forgeable
agreements, which are verifiable by any third party.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications

General Terms
Algorithms, Design, Security

Keywords
Decentralisation, storage quotas, digital contracts

1. INTRODUCTION
Since the very early days of peer-to-peer decentralised sys-

tems, resource management has been an important consid-
eration, to prevent a small number of users from taking ad-
vantage of the generosity of others [7]. This is illustrated by
research conducted by Sen and Wang in [11] on the Fast-
Track network, which showed that only 1% of network users
were providing 73% of the network bandwidth needed to

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
SIN ’14 Sep 09 - 11 2014, Glasgow, Scotland UK
ACM 978-1-4503-3033-6/14/09.
http://dx.doi.org/10.1145/2659651.2659724.

share files. In an earlier study carried out on the Gnutella
peer-to-peer network, Adar et al. presented in [1] that 70%
of users were not sharing any files, and that 1% of all users
were actually providing responses to over half of network
requests.

Early peer-to-peer networks were more focused on con-
serving bandwidth, since they were typically designed for the
purpose of sharing popular files between users quickly, with-
out relying on a central server. The MaidSafe decentralised
network, while focused more on the provision of storage,
faces similar challenges, where malicious users could poten-
tially use up all of the storage capacity of the network. The
most obvious means of mitigating this would be through the
use of storage quotas. These however are not easy to enforce
on a decentralised network in absence of a trusted authority
to adminster quotas.

2. OVERVIEW OF MAIDSAFE
Within the MaidSafe network [5], storage and bandwidth

(to access the stored data) is made available to the network
on behalf of a user. The network is self-managed, without
any central authority to make decisions as to permitted op-
erations, and each node is responsible for authorising the
actions of other nodes. Therefore, the ability for every node
to be certain of which operations other nodes can carry out
is essential.

Each node (client or vault) is managed by its 4 nearest
online neighbours on the network, with this proximity mea-
sured as an XOR-based distance between their addresses.
Since node addresses are the SHA512 cryptographic hash
of their public key, it should be computationally difficult to
position a node at a desired location on the network. As
nodes enter and leave the network, other nodes may become
closer, and these would take over the management role. The
managers of any given node should therefore be independent
from the node in question.

Users store their data (in encrypted form) on vaults, which
are regular computers owned and operated by other users on
the network. Clearly, each user has an inherent interest in
ensuring their data is correctly stored on the network, for
future retrieval. Otherwise, the network itself would prove
useless for its purpose of storing and retrieving data. In con-
sidering this network conceptually, it is simplest to assume
that users are entirely selfish, caring only about their own
data, and to require them to contribute resources for other
users in order to obtain the service they desire.

A more in-depth explanation of the MaidSafe network and



its vault network security is available in [10].

3. BALANCING OF NEEDS
According to IDC analysis, only 25% of data stored is

unique [3]. Likewise, the president of industrial analysts
DCIG, is quoted in [4] as saying that in a corporate envi-
ronment, deduplication can allow a company to store 20x
more data with the same storage faclities. In an analysis
of backup storage, Meyer and Bolosky [9] found that across
four weekly backups, file-level deduplication achieved a sav-
ing of 72% in storage requirements. While obviously not all
users will make use of MaidSafe solely to store full backup
images of their computers, the ability to deduplicate data
globally at file-level through MaidSafe appears likely to be
able to offer significant reductions in the storage capacity
necessary on the network to store files. Given MaidSafe
typically holds 4 copies of each data chunk, data deduplica-
tion would appear to balance with the need for replication
to ensure availability, if only 25% of the data was unique.

4. LIMITING STORAGE USAGE
Conventional, centralised, storage services often use a quota-

based system of resource control, where users are permitted
to store up to a certain capacity of data. [8] Beyond this
point, the user would either not be able to store further
data, or may be required to pay the service provider for an
increased storage quota. Within a decentralised network,
this is not necessarily possible without trusting a single en-
tity to accurately and fairly enforce these quotas, and iden-
tifying which users should receive payment for storage is
non-trivial.

It is therefore clear that it is necessary to have a decen-
tralised means of restricting storage utilisation. Given the
MaidSafe network has no central entity controlling account
creation, we believe it is not possible to offer users a free
storage quota, since such quotas could be defeated through
creation of multiple accounts. We therefore propose a means
of restricting storage available to users, without requiring
a centralised trusted authority, and while allowing for the
variation in storage quota based on contribution, be that
financial or by provision of storage itself.

5. ENFORCING STORAGE LIMITATIONS
The most obvious means of enforcing storage limitations

on users, in a decentralised manner, is to allow users to
store a quantity of data proportional to the quantity of data
they themselves are storing for other users. This ratio could
be one-for-one, allowing users to store the same amount of
data as they hold, or it could be non-unity, allowing users
to store more or less data than they themselves store for
other users (based on real-world understanding of the ef-
ficacy of global deduplication on user data). While Maid-
Safe have proposed the concept of offering free storage to
users, without them being required to contribute resources,
up to the average storage utilisation per user, we believe
this too easily abused, given there is no way to restrict how
many accounts one user can create - it is conceivable that
a modified fork of the open source MaidSafe client could
even unify these accounts, allowing users to effectively gain
unlimited storage without contributing resources to the net-
work. Naturally, this would be of significant detriment to
the network. While means of restricting account creation

are possible, these would ultimately end up either making
it difficult or time-consuming to join and use the network
(which is detrimental to the network by discouraging users),
or too easy for malicious users to create more accounts.

We therefore suggest that the best means of mitigation is
to only permit users to store data when they themselves are
proven to be storing data. This removes the motivation for
even the most selfish of users to create multiple accounts,
as they would receive no extra storage by having many ac-
counts. Within the context of the MaidSafe decentralised
network, this could be carried out in 2 main ways, explained
in the following sections.

5.1 Proof of Storage
Building upon work such as that by Juels and Kaliski

[6] and that of Zheng and Xu [13], a proof of data storage
could be used, in order to verify that a vault holds the data
it claims to, and has not corrupted it. The simplest proof
would be for the vault to provide the hash of data. This is
unsuitable as it is easily replayed. In a DHT, data is indexed
by its hash, meaning that the request to verify data must
identify the data itself by its hash. As shown by Juels and
Zheng though, it is possible to carry out challenge-response
style proofs, which would be safe against such attacks.

A limitation of these proofs is that they require the verifier
to themselves retrieve the data, in order to verify the proofs.
While a verifier could pre-compute a number of challenges
and responses, and then request them at a later point, this
is a hindrance to ad-hoc verification. Being able to verify
that a user was positively contributing to the network by
storing data in their vaults, without needing to consider the
data they held, would be effective and place no additional
network overhead on the verification process.

5.2 Manager Confirmation
Whenever a chunk is stored on the MaidSafe network, a

group of 4 nodes (surrounding the chunk’s address in the
DHT) act as chunk information managers, and delegate the
task of holding this data to other nodes on the network.
These nodes are themselves supervised by their 4 neigh-
bours, acting as chunk managers. A user could prove their
vaults’ contributions to the network by telling the verifier
the address of some chunks which it holds - the verifier could
then enquire with the chunk managers, to ensure this chunk
was reliably held by the node. By randomly checking a pro-
portion of the chunks claimed to be held by the node, the
verifier can probabilistically determine if the user is being
honest in their claims of storing data based upon verifying a
random selection of the claims. Since these managers mon-
itor the online status of the vault, vault reliability can also
be confirmed by the managers.

One potential risk of this approach is that it may be pos-
sible for a malicious user to cease to provide any useful stor-
age, and take advantage of their high reputation to store a
large quantity of data on the network, and no longer provide
any storage. In this case, their reputation would decrease as
they stored further data, as they were no longer providing
storage to the network.

This verification process is illustrated in Figure 1. We
believe this process to be robust, since the managers of a
vault will be separate from the managers of the client. Client
managers can enquire with vault managers as to the status
of a vault. It does however rely on the client managers being



Figure 1: Storage Verification via Vault Manager

uncompromised, or a verifiable chain of consensus being in
existence, which would indicate agreement with the decision
of the managers.

6. VERIFICATION CONSIDERATIONS
Implementing manager-based verification would require

little extra data to be retained by nodes on the network.
The main security requirements of this are;

• The client requesting storage can prove it owns and
controls the vault it claims is providing its storage

• The associated vault managers can vouch for it, using
a non-replayable reputation query process

• The associated vault has offered sufficient storage for
a sufficient period of time to offset the request

• The user is unable to “double-spend” by presenting the
same set of stored data on their vault

These considerations would ensure that clients are only
able to store as much data as they themselves are storing.
As more data is stored, their ability to store further data
would be reduced by their managers.

7. RELATION TO PREVIOUS WORKS
In previous works, storage quotas have typically been cen-

tralised in operation. For example, in the work of Druschel
and Rowstron [2], storage quotas depended upon centrally
issued and trusted smartcards, which contained a user’s stor-
age quota. While users could offer more storage (in exchange
for an increased storage quota), and audits over provided
and used storage were carried out, the network ultimately
depended upon a smartcard, as “enforcing quotas in the ab-
sence of a trusted third party would likely require complex
agreement protocols” [2]. Through the decentralised and
peer-managed approach of the MaidSafe network, it is possi-
ble to achieve this without explicitly trusting any individual
authority, since all statements are verifiable by any other
user of the network.

The work of Ngan, Wallach and Druschel [12] presented
the concept of auditable and decentralised quota manage-
ment, however required an auditing process which required
a public ledger to be permanently available, detailing a list
of the identifiers of every file being held by a vault, and
similarly, a list of the identifier of every file held by a client.
We believe that while this is a significant improvement upon

the original requirement for a smartcard in the original pro-
posal by Druschel & Rowstron, the presence of such public
audit logs poses a risk to the privacy of users on the network
— users storing specific data could be targeted, and vaults
providing their storage could also be identified and targeted.

We therefore propose that the ability to use a chained
consensus of groups of vault managers offers the ability to
carry out storage quota verification, without the need for
every user to disclose the identifier for every file they hold
or own. The chain of consensus ensures the probability of a
vault being able to control its own managers is minimised to
acceptably low probabilities (based upon SHA512 hash pre-
image collisions). This method would prevent users from
needing to store publicly, in a ledger, details of all data they
upload themselves, or hold for others.

8. OBTAINING FURTHER STORAGE
Fundamental to ensuring the flexibility of a storage-based

network is the ability for a user to store files, even when they
perhaps are unable to contribute towards the storage of files
for other users. In the case of centralised storage systems,
users typically pay the service operator for the allocation of
a larger storage quota. In the case of a decentralised network
however, this is not necessarily feasible, since data is split
into chunks. These chunks are distributed to many vaults,
with chunk redistributed throughout the network as nodes
join and leave.

As discussed by Ngan et al. in [12], it is desirable to allow
users to exchange storage quotas, such that a user with a
surplus of storage can agree to sell that to a user who wishes
to store more data than they can themselves store. In a
decentralised storage network, this matching of users means
that sufficient storage will be present to ensure the longevity
of the network, while offering users flexibility.

In a decentralised and trust-less network, it is necessary to
identify a means through which a contract for storage could
be enforced, such that the provider (rather than the buyer)
would lose reputation for failing to provide the storage as
agreed, and to ensure that neither party can lie about the
terms of the agreed storage deal. We therefore propose a
protocol, implemented on top of the existing MaidSafe net-
work, which would permit irrepudiable and non-forgeable
agreements to offset storage to be negotiated, and enforced,
by the decentralised network.

8.1 Decentralised Storage Purchase Protocol
The protocol operates as follows:



• Buyer locates a provider offering storage for sale (this
could be provided as a decentralised service)

• Buyer and provider negotiate a price for an agreed
quantity of storage, duration, price, and offer validity

• Provider signs this offer of sale with their private key,
and states a (for example) Bitcoin address in the offer

• Buyer reviews the offer, ensuring the offer is as agreed

• To complete the deal, the buyer pays the agreed funds
to the provider via the agreed Bitcoin address

• The sale is verifiable by any third party able to view
the contract, since the Bitcoin transaction is visible on
the blockchain

The sale agreement can be made available by the buyer,
allowing other nodes to verify that it has completed a trans-
action with the provider of the storage. The provider would
be responsible for this provision, and their own reputation
would be affected in the event of a shortfall affecting this
user. While we use Bitcoin for payment processing, it could
easily be adapted to any cryptographic currency permitting
third-party verification of payments via a public ledger (like
the Bitcoin blockchain), and some method of timestamping
(like the block ID).

The provider is protected from a malicious buyer, since
the buyer cannot forge the seller’s signature. This protects
the details of the offer. It also states the identity of the
buyer (their public key), meaning that another user cannot
attempt to claim their entitlement to storage from another
user’s agreement. The offer contains a validity period (to
prevent a buyer from requesting an offer, then waiting un-
til the value of storage or currency has changed, then ac-
cepting it), based upon the current block ID of the Bitcoin
blockchain at the time of purchase.

The buyer is protected from a malicious provider, as the
provider cannot deny the agreement exists (as the agreement
was signed by the seller), and anyone can verify the agreed
fee was paid, before the offer expired, thus validating the
contract.

As such, this protocol allows two parties, neither of whom
need trust each other, to negotiate a deal for one to pro-
vide storage on behalf of the other party. Both parties are
protected from the other failing to honour their part of the
deal. In the event of the provider reneging on the deal, they
can be held accountable by the decentralised network, as the
agreement is provable.

It is important to note that this network remains decen-
tralised — purchasing storage from a user does not alter
or influence where that data is stored — it is simply an
offsetting process to ensure further storage exists in the net-
work, to avoid storage space being depleted. Buyers are pro-
tected from price-fixing as they can purchase storage from
any party on the network. As any user can already provide
any quantity of storage to the network, this protocol does
not reduce decentralisation, rather it increases flexibility for
users.

9. CONCLUSIONS
Within decentralised storage networks, a major challenge

is to ensure that resources are not abused by selfish users.
With historical evidence that many users in peer-to-peer

based systems avoid contributing storage or bandwidth for
the sharing of files, a challenge exists for networks which rely
on users to contribute storage. Without requiring a trusted
third party, we have demonstrated it is possible in a peer-
managed decetralised network to restrict users to only store
data in proportion to what they themselves are holding for
other parties. This can be tested without any significant ver-
ification overhead, by enquiring with the independent group
of managers of a data-holding vault as to the quantity of
storage verified as being offered by that node. We also pro-
posed a protocol for secure, verifiable contracts which would
permit users to request storage be provided on their behalf
by other users on the decentralised network. This is possi-
ble without the need for trust between the buyer or seller,
while allowing any third party to verify the agreement was
completed, and payment was made.

10. ACKNOWLEDGMENTS
This work was funded by EPSRC Doctoral Training Grant

EP/K503174/1, and MaidSafe.net.

11. REFERENCES
[1] E. Adar and B. A. Huberman. Free riding on gnutella.

First Monday, 5(10), 2000.

[2] P. Druschel and A. Rowstron. Past: A large-scale,
persistent peer-to-peer storage utility. In Hot Topics
in Operating Systems, 2001. Proceedings of the Eighth
Workshop on, pages 75–80. IEEE, 2001.

[3] J. Gantz and D. Reinsel. The digital universe decade -
are you ready? Technical report, EMC Corporation,
2010.

[4] D. Geer. Reducing the storage burden via data
deduplication. Computer, 41(12):15–17, 2008.

[5] D. Irvine, J. Irvine, and S. K. Goo. Sigmoid (x):
Secure distributed network storage. WWRF, 2011.

[6] A. Juels and B. K. Jr. Pors: Proofs of retrievability for
large files. Proceedings of the 14th ACM conference on
Computer and communications security, 2007.

[7] F. Liu, Y. Sun, B. Li, and B. Li. Quota: Rationing
server resources in peer-assisted online hosting
systems. In Network Protocols, 2009. ICNP 2009. 17th
IEEE International Conference on, pages 103–112.
IEEE, 2009.

[8] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.
Fabry. A fast file system for unix. ACM Transactions
on Computer Systems (TOCS), 2(3):181–197, 1984.

[9] D. T. Meyer and W. J. Bolosky. A study of practical
deduplication. ACM Transactions on Storage (TOS),
7(4):14, 2012.

[10] G. Paul, F. Hutchison, and J. Irvine. Security of the
MaidSafe Vault Network. WWRF Meeting 32, May
2014.

[11] S. Sen and J. Wang. Analyzing peer-to-peer traffic
across large networks. IEEE/ACM Transactions on
Networking (ToN), 12(2):219–232, 2004.

[12] D. S. Wallach, P. Druschel, et al. Enforcing fair
sharing of peer-to-peer resources. In Peer-to-Peer
Systems II, pages 149–159. Springer, 2003.

[13] Q. Zheng and S. Xu. Secure and efficient proof of
storage with deduplication. Proceedings of the second
ACM conference on Data and Application Security
and Privacy - CODASKY ’12, page 1, 2012.


