Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Fabrication of 3D mili-scale channels of hemodynamic studies

Doutel, E. and Carneiro, J. and Oliveira, Monica and Campos, J.B.L.M. and Miranda, J.M. (2015) Fabrication of 3D mili-scale channels of hemodynamic studies. Journal of Mechanics in Medicine and Biology, 15 (1). ISSN 0219-5194

[img] PDF (Doutel E et al - Pure - Fabrication of 3D mili-scale channels for hemodynamic studies)
Doutel_E_et_al_Pure_Fabrication_of_3D_mili_scale_channels_for_hemodynamic_studies.pdf - Accepted Author Manuscript

Download (1MB)

Abstract

3D mili-scale channel representing simplified anatomical models of blood vessels were constructed in polidimethylsiloxane (PDMS). The objective was to obtain a sequential method to fabricate transparent PDMS models from a mold produced by rapid prototyping. For this purpose, two types of casting methods were compared, a known lost-wax casting method and a casting method using sucrose. The channels fabricated by both casting methods were analysed by Optical Microscopy, Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The lost-wax method is not ideal since the channels become contaminated during the removal process. The models produced with the lost-sucrose casting method exhibit much better optical characteristics. These models are transparent with no visible contamination, since the removing process is done by dissolution at room temperature rather than melting. They allow for good optical access for flow visualization and measurement of the velocity field by micro-particle image velocimetry (μPIV). The channels fabricated by the lost-sucrose casting method were shown to be suitable for future hemodynamic studies using optical techniques.