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Abstract
The ion-channel laser (ICL) is an ultra-compact version of the free-electron laser
(FEL), with the undulator replaced by an ion channel. Previous studies of the
ICL assumed transverse momentum amplitudes which were unrealistically small
for experiments. Here we show that this restriction can be removed by correctly
taking into account the dependence of the resonance between oscillations and
emitted field on the betatron amplitude, which must be treated as variable. The
ICL model with this essential addition is described using the well-known
formalism for the FEL. Analysis of the resulting scaled equations shows a
realistic prospect of building a compact ICL source for fundamental wavelengths
down to UV, and harmonics potentially extending to x-rays. The gain parameter
ρ can attain values as high as 0.03, which permits driving an ICL with electron
bunches with realistic emittance.
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1. Introduction

The free-electron laser (FEL) [1, 2] produces highly coherent, ultra-short duration light pulses
with extremely high peak brilliance, and photon energies extending to above 10 keV. FELs are
very useful for ultrafast time-resolved studies of the structure of matter but require high energy
electron beams and long undulators, which makes them large and expensive. In spite of the high
cost, several large national and international x-ray FELs [3] have been, or are being, built
because of their potential for delivering new science and applications.

FELs are based on the collective interaction of high energy electrons that are periodically
deflected by an undulator. The combined undulator and radiation fields give rise to a
ponderomotive force that bunches the electrons on a wavelength scale and results in intense
coherent emission. The self-amplified spontaneous emission FEL [2] produces coherent
radiation by amplifying incoherent synchrotron radiation spontaneously emitted by the initially
uncorrelated electron beam.

However, magnetostatic undulators are not the only means of providing a periodic
transverse force. Whittum et al [4] suggested in 1990 that an ion-channel laser (ICL) could use
the ‘betatron’ motion of electrons in an ion-channel to emulate an undulator, resulting in a very
compact device.

An important difference between the FEL and ICL is the spatial periodicity of the
transverse oscillations. In the FEL, this is fixed by the undulator, whereas in the ICL it depends
on the ion density, and both the electron energy and oscillation amplitude. Due to this latter
dependence, maintaining resonance with the emitted field in an ICL requires a small amplitude
spread, unless the transverse momentum is very small. Only the latter case with very small
amplitudes was treated in [4] and [5]. However, this is constrained to very low emittances that
are very difficult to achieve in practice.

In this paper, we consider the more general and realistic case of high transverse
momentum, which requires the betatron amplitude to be treated as variable. We derive a set of
equations for the ICL describing, on a slow timescale, the complex amplitude of the amplified
wave, and the axial momenta, betatron amplitudes, and ponderomotive phases of the oscillating
electrons. We assume ultra-relativistic axial and high transverse momenta, but non-relativistic
transverse velocity; we study the steady-state regime by neglecting slippage between electrons
and wave, but include space-charge effects.

The form of the equations allows one to apply the well-known scaling procedure for the
FEL, with an analogous fundamental coupling parameter ρ [2]. We present analytical and
numerical results showing that for small ρ the evolution of field amplitude, phase bunching, and
axial momentum in the ICL is virtually identical to the FEL.

We investigate how the growth of the radiation field depends on the initial spreads of axial
electron momentum and betatron amplitude. Sufficiently low betatron amplitude spreads
(compared to the mean oscillation amplitude) can be achieved by injecting the electrons off-axis
and/or under an angle, as shown schematically, for just two electrons, in figure 1. The
admissible betatron amplitude spreads lead to a small source size for the emitted radiation,
which necessitates guiding to avoid diffraction. Small overlap between the radiating electrons
and the guided mode makes space-charge effects relatively much more important than in the
FEL. We find that at large values of ρ electron beams with realistic amplitude spreads and
emittance can be used to drive the ICL and show that by removing the restriction of small
amplitude, an UV ICL with high efficiency should be feasible.
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The next section sets out our model for the ICL. In section 3, we apply a formalism similar
to that for the FEL, before presenting numerical solutions in section 4. We discuss the results in
section 5, and finally draw conclusions.

2. Model

2.1. Hamiltonian

We consider test electrons in a cylindrical channel otherwise void of electrons, along the z-axis,
with homogeneous stationary ion background. For motion in the y–z-plane, the electron energy
is

⎡
⎣⎢

⎤
⎦⎥γ γ γ= + = + +( )H mc V p eA mc, with ( ) ,y

2
0
2 2

2
1 2

where

⎡⎣ ⎤⎦γ = + p mc1 ( ) ;z0
2 2 1 2

pz and py are axial and radial components, respectively, of the canonical momentum, and A is
the vector potential, taken along the y-axis. The potential energy is

ω=V m y 4,p
2 2

where ω ε= e n m[ ( )]p
2

0 0
1 2 is the plasma frequency for the background density, n0 (with e the

elementary charge, m the electron mass, and ε0 the permittivity of free space).

2.2. Transverse electron motion

The test electron will perform betatron oscillations

ω= β β( )y t r t( ) cos ,

Figure 1. Schematic of electron injection into the ion channel. An offset in position
(y (0)) and/or momentum (p (0)) from the channel axis (z-axis) leads to betatron
oscillations (red trajectory) in the parabolic potential V(y), with amplitude βr . The
orange trajectory is for an electron with slightly different initial conditions, but equal βr .
An electron bunch with suitable initial distribution in phase space can have a small
betatron amplitude spread.
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with frequency ω ω γ=β (2 )p
1 2. The associated energy,

γ γ= − +βW mc V( ) ,0
2

is assumed small compared with γ mc0
2; approximately,

γ≈ +βW mv V2 , (1)y0
2

with γ ω= + = − β βv p eA m v t( ) ( ) sin ( )y y 0 , and ω= ≪β β βv r c. The betatron amplitude, βr , is
defined by

ω=β βW m r 4.p
2 2

ϕ= − +A a mc eexp ( i ) (2 ) c.c.0 represents a linearly polarized propagating wave, with phase
ϕ ω= −t kz, where ω ≈ ck, and slowly varying complex amplitude a0.

2.3. Ponderomotive force

The corresponding axial ponderomotive force is

η ω θ= +βp m a v˙ exp (i ) 4 c.c .,z
pond

h 0

where θ ω ϕ= −β t is the ponderomotive phase, and the dot designates the total time
derivative, = ∂ ∂ + ∂ ∂t t v zd d z . The factor

η = −β β( ) ( )Q QJ J ,h 0 1

where J0,1 are Bessel functions, and

=β β βQ kr v c(8 ),

accounts for the modulation of the axial velocity [6]:

ω= + β( )v v v t¯ cos 2 ,z z m

with = βv v c(4 )m
2 , = −v v vz̄ z0 m, and γ= −v c [1 1 (2 )]z0 0

2 .

2.4. Betatron amplitude evolution

From equation (1) we find ∂ ∂ = ∂ ∂ =β βW x W p 0x and ∂ ∂ + ∂ ∂ =β βW y y W p p( ) ˙ ( ) ˙ 0y y ; the

betatron energy thus evolves as = ∂ ∂ + ∂ ∂ + ∂ ∂β β β βW W p p W z z W t˙ ( ) ˙ ( ) ˙z z . As βW depends on

pz only through γ0, the first term on the rhs can be written as γ γ γ∂ ∂ = −βW mv( ) ˙ ˙ 2y0 0
2

0 . The

minus sign is due to py, z, and t (and thus +p eAy rather than vy) being kept fixed in the partial

derivative. Similarly, as the only dependence on z and t is through A, the two remaining terms

are equal to ∂ ∂ =βW A A v eA( ) ˙ ˙
y . Together, this yields

γ= −βW v eA mv˙ ˙ ˙ 2.y y
2

0

4

New J. Phys. 16 (2014) 093025 B Ersfeld et al



Hence, on a slow scale, the betatron amplitude evolves according to

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥θ ω γ γ γ= + −β β( ) ( )r c a r˙ i ˙ exp (i ) c.c. 2 2 ˙ 4 . (2)0 p 0

1 2
0 0

2.5. Resonance

Betatron oscillations and wave are in resonance when the ponderomotive phase is stationary. At
the position = +z t z v t( ) (0) z̄ of the electron, with time-averaged velocity v̄z, the phase evolves
as

⎜ ⎟⎛
⎝

⎞
⎠θ ω ω ω ω γ= − − ≈ −β β( )v c˙ 1 ¯ 2 ¯ ,z z

2

with γ γ= − ≈ + β
−v c a¯ (1 ¯ ) (1 2)z z

2 2 1 2
0

2 1 2; the betatron parameter

γ=β βa v c/0

is the normalized amplitude of transverse momentum. Resonance thus occurs for

⎡⎣ ⎤⎦ω ω γ γ ω= + β( ) ( )r c2 1 4 .p 0
3 1 2

0 p
2 2 2

For ≫βa 1, which for very high γ0 is possible although ≪βv c,

θ ω γ ωω γ= − β
− ( )( ) r c˙ 2 8 , (3)p 0

1 2
p
2 2

0
2

and the resonance condition is γ γ=0 res, with

γ ω ω= β ( )r c32 . (4)res
2

p
2 4 4

2.6. Space-charge

In an electron bunch, space-charge forces [6] contribute to the slow longitudinal force; thus

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥γ

η ω
η

ω
ω

θ θ= − − +
β ( )

v

c
a˙

4
i exp ( i ) exp i c.c ., (5)j

j
j0

h
0 f

b
2

where in the space-charge term, proportional to ω ω= n nb
2

p
2

b 0, with nb the density in the
bunch, the angled brackets denote an average over the electrons in a slice, and ηf accounts for
the finite width σ y( ) of the electron bunch; η σ≈ 〈 〉βy r( )f if this is <1; else η = 1f .

2.7. Radiation emission

The radiation from these electrons adds to the wave amplitude:

η η η ω θ ω∂ ∂ + ∂ ∂ = − −βt c z a v c( ) exp ( i ) (2 ). (6)0 h m f b
2

Here ηh, defined above, accounts for the reduced emission at the fundamental frequency of the
harmonic spectrum [6]. For a planar source, the amplitude of the ℓth harmonic evolves as

η η ω θ ω∂ ∂ + ∂ ∂ ≈ − −β β( )t c z a v F Q c( ) exp ( iℓ ) (2ℓ ),0
(ℓ)

m f b
2

ℓ

5
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with = −− +F Q Q Q( ) J (ℓ ) J (ℓ )ℓ (ℓ 1) 2 (ℓ 1) 2 (thus η = βF Q( )h 1 ). The resulting spectrum has a
synchrotron-like envelope, with critical frequency ω ω≈ βa3 8c

3 . In resonance,
= +β β βQ a a(4 2 )2 2 ; η ≈ 0.7h for ≫βa 1. ηm accounts for the spatial overlap of current

density and radiation mode, which will be discussed below.

2.8. Steady-state

In the following, we neglect slippage between electrons and wave, as in the steady-state FEL
regime [2], thus ≈ ∂ ∂ + ∂ ∂t t c zd d . Combining equations (2) and (6) then yields
γ γ〈 〉 =β

− r td( ) d 00
1 2

0
1 2 2 , implying that γ〈 〉 ∝ 〈 〉β β βa r r0

1 2 2 is conserved if correlations between
electron energy and ponderomotive phase can be neglected. Furthermore, equations (5) and (6)
may be combined to express energy conservation: η η ω γ ω+ 〈 〉 =a| | 2 const.0

2
m f b

2
0

2

3. FEL formalism

We express the energies γ j0, and betatron amplitudes βr j, of individual electrons in terms of their
initial averages

γ γ γ γ= =β βR r˜ (0), ˜ ,0 0 0
1 2 2 1 2

0
1 4

and relative deviations qj and sj, respectively:

γ γ γ γ= + = +β β( )( ) ( )q r R s˜ 1 , ˜ 1 .j j j j j0, 0 , 0 0,

1 4

Neglecting slippage, equations (2), (3) and (5), for each electron, and (6) form a closed set of
equations, which are similar to the FEL equations [2]. In analogy to the FEL-parameter, we
define

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
⎟⎟

⎡

⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥
⎥ρ

ηω

γ

η η η

γ
= = ≈β β β

−

R

c

n

n

v

c

n R

μ8 ˜ 4

˜
0.13

˜ 10 cm m
, (7)

b
2 2

0
2

1 3

b

0

2

2

1 3

m f

0

b

18 3

2
1 3

with η η η η= h
2

m f , ω=β β βv R˜ ˜ and ω ω γ=β˜ /(2˜ )p 0
1/2. For typical experimental parameters,

=n 10b
16– −10 cm20 3, =βR 1– μ10 m, γ =˜ 100

2–103, η = 0.01m –0.1, and η = −10f
6–0.1, we find

ρ ≈ −6 · 10 6–0.13. Higher values of ρ could be obtained for relativistic transverse velocities,
which are beyond the scope of this study. In the following, we use η ≈ 0.01m corresponding to
propagation in a channel surrounded by underdense plasma.

Scaling time τ ρω= β t˜ , and amplitude η ρ= − βa a a¯ /( ˜ )0 h 0
2 , with γ=β βa v c˜ ˜ ˜ /0 , the

evolution equations become

δ= +′a b¯ (1 ) , (8)0

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭θ ρ δ= ≡ + − + + +′ − −( ) ( )( )P q s q¯ 1 1 (1 ) 1 , (9)j j j j j
1

1 2 2 3 2

6
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⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ρ
δ

ρ δ
η η

θ θ= −
+

+ +
+ + − +′

( )
( )q a

s

q
i¯

1

(1 ) 1
2

1
exp ( i ) exp i c.c ., (10)j

j

j

j0 3 4
2

h
2

m

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥ρ η θ= − + +′ ′ ( )( )( )s a qi 4 ¯ exp i 1 c.c ., (11)j j j

2
h 0

1 4

where the prime denotes the derivative with respect to τ,

⎛
⎝⎜

⎞
⎠⎟δ γ γ≡ −

=β β
˜ 1

r R0 res

1 2

is the average detuning from resonance, and

θ≡ + − +b s q(1 ) exp ( i ) (1 )3 4

is the bunching factor.
Equations (10) and (11) suggest scaling

ρ η ρ δ δ ρ= = =q q s s¯ / , ¯ 2 / , and ¯ / .j j j jh
2

If qj, sj, and δ are small compared to unity, equations (8)–(11) may be linearized, and the last
two merged using

ρ η δ≈ − +P q s¯ ¯ ¯ / ¯,j j j h

to obtain:

θ= −′ā exp ( i ) , (12)0

θ =′ P̄ , (13)j j

ρ θ θ= − + − +′P a i¯ [ ¯ ˜ exp ( i ¯) ] exp (i ¯ ) c.c ., (14)j j0

with

ρ ρ η η η= − ( )( )˜ 4 2 .m h h
2

Except for this coefficient (rather than ρ), these equations are nearly identical to those of the
FEL with space-charge [6]. However, due to the small value of ηm, space-charge effects are
relatively enhanced.

For small signal, assuming κ δ τ∝ −ā exp (i[ ¯] )0 , the secular equation

κ κ δ κρ ρδ− − + + =¯ ˜ 1 ˜ ¯ 03 2

is similar to that for the FEL [2]. For δ̄ below a threshold value, there is an unstable solution
with amplitude growing exponentially at a rate Γ ρ ω κ= β˜ | Im ( )|, which gives the gain of the

ICL. For small δ̄ and ρ̃,

7
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⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥Γ Γ ρ ω ρ δ ρδ= ≈ − − −β( )¯ ˜ 3 1 ˜ 3 ¯ 2 ˜ ¯ 9 2.2

4. Numerical results

We have numerically solved the set of equations (8)–(11) for different values of ρ and δ, with

small initial field, = −a| ¯ |(0) 100
3, and vanishing initial bunching, =b (0) 0 (thus =′ā (0) 00 ).

We varied the initial spreads of momenta, σ q( ¯ (0)), and of betatron amplitudes, σ s(¯ (0)) (where

σ = 〈 〉 − 〈 〉f f f( ) ( )2 2 1 2) to explore their effect on the interaction and determine the threshold

conditions for a realizable ICL. Figure 2 shows the spreads of momentum σ q( ¯), and betatron

amplitude σ s(¯) as functions of τ for varying initial values, together with the corresponding field

intensities, for ρ = 0.01 and δ =¯ 2.0, which is optimized for fastest growth. For small initial

spreads, the evolution of intensity a| ¯ |0
2, bunching b| |, and average 〈 〉q| ¯ | and spread σ q( ¯) of the

momentum deviations is similar to the conventional FEL, with stages of lethargy, exponential

growth, and saturation, where each of the scaled variables is of order unity and oscillates quasi-

Figure 2. Evolution of spreads of momenta, σ q( ¯), and amplitudes, σ s( ¯), and
corresponding field intensity a| ¯ |0

2, for ρ = 0.01 and varying initial conditions: (a) σ q( ¯)
and (b) a| ¯ |0

2 for σ =s( ¯ (0)) 21 and σ =q( ¯ (0)) 0.3 (solid red), σ =q( ¯ (0)) 0.6 (dashed
green), σ =q( ¯ (0)) 0.9 (dot-dashed blue), and σ =q( ¯ (0)) 1.2 (dotted pink); (c) σ s( ¯) and
(d) a| ¯ |0

2 for σ =q( ¯ (0)) 0.3 and σ =s( ¯ (0)) 21 (solid red), σ =s( ¯ (0)) 42 (dashed green),

σ =s( ¯ (0)) 63 (dot-dashed blue), and σ =s( ¯ (0)) 84 (dotted pink).
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periodically [7]. If σ q( ¯) initially is close to its saturation value, ∼2.0, it remains approximately
constant, and the growth of the field is suppressed. Interestingly, the amplitude spread σ s(¯),
which does not play a role in the FEL but affects the resonance in the ICL, evolves in an
analogous way to σ q( ¯). However, the threshold for σ s(¯ (0)) to suppress the growth of a| ¯ |0

2 is
ρ∼0.7 ; the contribution from σ s(¯) to the relevant spread σ P( ¯) is scaled with ρ ηh, cf.

equation (13).
Varying ρ from 0 to 0.05, while maintaining optimized detuning, space-charge effects

increase the scaled saturation intensity by about one third, and reduce the scaled gain coefficient
by one half. The linearization yielding equations (12)–(14) is valid for ρ < 0.003.

Figure 3 shows the dependence of the growth rate on initial momentum and amplitude
spreads. These plots (and similar ones for the saturation amplitude) yield an approximate
condition for amplification in the ICL:

⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦σ γ γ σ ρ ρ+ ⩽ +β β( )( ) r R(0) ˜ (0) (1 10 ) , (15)0 0

2 2
2 2

i.e., the relative spread, between different electrons, in the variable P̄, equation (9), must be less
than ρ∼ . These admissible spreads imply optimum detuning δ. The condition Δγ γ ρ<z z in [8],
referring to variations of the ‘axial energy’ within a cycle, does not apply, since these are taken
into account by the emission efficiency ηh for the fundamental frequency of the harmonic
spectrum.

The condition (15) suggests setting η ρη= ¯f f , with η ≈¯ 0.5f , resulting in a new scaling for
the FEL parameter, cf equation (7):

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ρ η η η ω γ γ= ≈ ×β β

− −( ) ( ) ( )R c n R μ¯ 8 ˜ 3.3 10 10 cm ˜ m . (16)h
2

m f b
2 2

0
2

1 2
3

b
18 3

0

1 2

For the parameters given after equation (7), ρ ≈ −10 5–0.03.

Figure 3. Contours of growth rate Γ τ= a¯ d ln | ¯ | d0 for varying σ q( ¯ (0)), and σ s( ¯ (0)),
for (a) ρ = 0.005, δ =¯ 1.5, and (b) ρ = 0.05, δ =¯ 5.5.
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5. Discussion

Whittumʼs original proposal for the ICL [4] would be very difficult to realize experimentally, at
least for high γ̃0, due to the restriction to very small transverse momenta, ≪βa 1, which would
also lead to very low gain and low efficiency and thus unfeasibly long devices. However, we
have shown here that large transverse momenta can realistically be used, by explicitly taking
into account the effect of the betatron amplitude on the resonance. This allows the coupled
radiation-matter equations to be cast in a form similar to that of the conventional FEL.

An ion channel can be realized experimentally by focusing a laser pulse with relativistic
amplitude ω>E m c eL L (where ωL is the laser frequency) into plasma. Its ponderomotive force
displaces the electrons from its path and a ‘bubble’ structure is formed, which provides the
required transverse field in addition to a longitudinal wakefield [9]. To minimize the variation of
γ̃0, the electron bunch should be close to dephasing, at the centre of the ‘bubble’; as their
velocities are different this limits the useful propagation length.

Figure 4 shows possible initial phase-space distributions resulting in low amplitude spread.
Small σ β βr R( ) , ρ∼0.7 , can be achieved by injecting electrons either off-axis at a distance βR ,
with σ ρ≈ βy R( ) 0.5 (figure 4(a)) and a range of betatron phases σ φ σ ρ≈ ⩽β βv v( ) ( ) ˜ 0.8y ,
or at an angle βv carctan ( ˜ ), with σ ρ≈ βv v( ) 0.5 ˜y and σ ρ≈ βy R( ) 0.8 (figure 4(b)). An
electron bunch trapped in the ‘bubble’ could be offset from the axis by perturbing the
propagation direction of the laser and thus of the ‘bubble’ [10].

The normalized emittance,

ϵ γ σ σ ρ≈ ⩽ β βπ y v c π a R˜ ( ) ( ) 0.4 ˜ ,y yn 0
3 2

sets a lower limit for the emitted fundamental wavelength: using equations (4) and (16)

⎡
⎣⎢

⎤
⎦⎥λ ω ϵ ρ γ ϵ γ= ⩾ = ×β β β

−( ) ( ) ( )π R c n R μ˜ (2 ) 0.8 ˜ 6.6 10 10 cm m ˜ .y y
2

n
3 2

0
3

n b
18 3 3 4 3 2

0

1 4

In the x-direction, perpendicular to the polarization, the matched bunch width for ϵ ϵ=xn yn is

σ ρ⩽ βx R( ) 0.6 3 4 . The source size is thus σ ρ⩽β βπ x R R( ) 4 0.5 3 4 2, and the Rayleigh length

ρ λ ρ λ=β βR0.5 0.053 4 2 3 4 . This is shorter than the gain length, λ ρ= βl π( 3 )g by a factor of

Figure 4. Schematic of initial phase-space distributions of electron bunches injected off-
axis (a) and under an angle (b), respectively, with different widths σ y( ) and velocity
spreads σ v( )y , but resulting in equal betatron amplitude βR and spread σ ≪β βr R( ) .
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ρ∼0.3 7 4, making some form of guiding necessary. Optical guiding is naturally provided by the

plasma channel, since the refractive index in the channel (≈1) is higher than in the surrounding

plasma ( ω ω−[1 ]p
2 2 1 2). An analysis similar to [11] shows that the plasma channel can guide

high-frequency modes if its radius exceeds ωc p. The overlap factor of the lowest order mode
with an electron bunch, oscillating with amplitude matched to the channel radius, is η ≈ 0.01m
for ω ω≫ p.

Electron bunches can be accelerated in laser wakefields to γ = −˜ 200 3000 with relative
energy spread as small as σ γ γ ∼( (0)) ˜ 0.010 0 [12], and normalized emittance ϵ ∼ − π10 myn

6

[13]. This emittance together with = −n 10 cmb
20 3, =βR μ10 m, and γ =˜ 3000 , thus ρ = 0.02,

yields λ ⩾ μ5 m; for the shortest wavelength, ω =β
−˜ 10 s13 1, ω = × −2.4 10 sp

14 1,
= × −n 1.8 10 cm0

19 3, = =β
−v c˜ 10 ms 0.338 1 , =βã 100, and gain length =l 1.7 mmg ; the

critical harmonic number of the synchrotron-like spectrum is = = ×βh a3 8 3.8 10c
3 3,

corresponding to a critical wavelength λ = × −1.3 10 mc
11 . These latter values are for guidance

only; the high oscillation amplitude, larger than the bunch width, leads to a modified emission
spectrum. Improving the emittance to ϵ ∼ × − π4 10 myn

8 [14] allows λ ⩾ × −2 10 7 m; in this
case, ω = ×β

−˜ 4 10 s11 1, ω = × −9.6 10 sp
12 1, = × −n 2.7 10 cm0

16 3,
= × =β

−v c˜ 4 10 ms 0.0136 1 , =βã 4, =l 4.5 cmg , =h 24c , and λ = × −8.3 10 mc
9 . The

current in these cases is ≈I 600 A, and the efficiency of converting kinetic electron energy into
radiated energy, ρ ≈a| ¯ | 2%0

2 at saturation, giving a peak power, at the fundamental wavelength,
of 2 GW and respective photon rates of × −5 10 s28 1 and × −2 10 s27 1. Increasing nb to

× −1.5 10 cm20 3 and βR to 15 μm, with γ =˜ 2000 , results in ρ = 0.049. For emittance
ϵ ϵ= = −10x yn n

6 πm and ω = × −3.4 10 sp
13 1, the fundamental wavelength is λ = μ2 m and

the gain length 4mm. In this case, =βã 17 and λ = × −1.1 10 mc
9 ; the current is 10 kA, the

peak power emitted at λ, 50GW, and the photon rate × −5 10 s29 1.
While in the present study we consider planar electron motion and linear polarization of

the radiation field, the theory can be extended to describe betatron oscillations in both transverse
directions, leading to elliptical polarization. The simplest case, equal amplitudes in both
directions, with a phase difference of π 2, results in circular polarization. In this case, the
distance from the axis and the magnitude of the transverse momentum are slowly-varying; as a
consequence, there will be no synchrotron-like spectrum. Experimentally, these cases can be
realized by combining off-axis and oblique injection out of plane.

6. Conclusions

In conclusion, we have developed a comprehensive model for the ICL by studying the
collective interaction of electrons moving in an ion channel with a propagating wave. Including
the effect of variable betatron amplitude on the resonance between field and electrons is
essential to correctly describe experimentally accessible regimes. We show that the ICL can be
described in a similar way to the FEL and define an analogous ρ-parameter, which can
realistically reach 0.03, which is high for an FEL. However, space charge effects are relatively
much more important here, with a corresponding new coupling parameter ρ ρ∼˜ 400 .

Numerical solutions with varying initial spreads in axial momentum and betatron
amplitude confirm the condition, known from the FEL, that the relative momentum spread must
be less than ρ∼ , and give an analogous condition for the amplitude spread. A numerical
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example indicates the requirements for operating an ICL down to UV fundamental
wavelengths, with harmonics potentially extending to x-rays. A high value of ρ is essential
for reconciling the requirement of low betatron amplitude for emission at short wavelength with
experimentally accessible amplitude spread. While the present study covers the steady-state
case and neglects longitudinal plasma fields, the model can be readily extended to the time-
dependent regime where superradiant pulses will evolve [15–19]. The resonance with a
propagating wave also plays an important role in laser-driven betatron oscillations [20, 21].
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