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Abstract. We present an iterative algorithm which asymptotically scales the ∞-norm of each
row and each column of a matrix to one. This scaling algorithm preserves symmetry of the original
matrix and shows fast linear convergence with an asymptotic rate of 1/2. We discuss extensions
of the algorithm to the one-norm, and by inference to other norms. For the 1-norm case, we show
again that convergence is linear, with the rate dependent on the spectrum of the scaled matrix. We
demonstrate experimentally that the scaling algorithm improves the conditioning of the matrix and
that it helps direct solvers by reducing the need for pivoting. In particular, for symmetric matrices the
theoretical and experimental results highlight the potential of the proposed algorithm over existing
alternatives.

Key words. Sparse matrices, matrix scaling, equilibration

AMS subject classifications. 05C50, 65F35, 65F50

1. Introduction. Scaling a matrix consists of pre- and post-multiplying the
original matrix by two diagonal matrices. We consider the following scaling problem:
given a large, sparse matrix A ∈ Rm×n, find two positive diagonal matrices D and E
such that all rows and columns of the scaled matrix Â = DAE have the same length
in the ∞-norm. We propose an iterative algorithm for this purpose which preserves
symmetry (when present), and we investigate its convergence properties. We discuss
the extension of the algorithm to the 1-norm, and describe how it can be used for
other norms as well.

Scaling or equilibration of data in linear systems of the form Ax = b can provide
significant computational benefits. In this setting, we form a scaled matrix Â = DAE
and solve the equation Âx̂ = b̂, where x̂ = E−1x and b̂ = Db, with the expectation
that the scaled system has better conditioning and hence provides more accurate
results. Scaling can also be helpful in designing algorithms for linear systems. For
example, Bunch and Parlett [?] prove the stability of their factorization method by
assuming that the rows (hence the columns) of the symmetric input matrix have
∞-norm equal to 1.

There are several well-known algorithms (see for example [?, Section 4.12], [?,
Section 3.5.2], and [?]) for scaling matrices. The row and column scaling methods are
amongst the simplest. The row scaling method divides each row in the original matrix
by its norm. Different norms, such as the ∞-norm or the 1-norm, may be considered,
depending on the application. Column scaling is equivalent to row scaling on AT . A
more elaborate scaling method is proposed by Curtis and Reid [?] and is implemented
as MC29 in the HSL Mathematical Software Library. This method aims to make the
nonzeros of the scaled matrix close to one by minimizing the sum of the squares of the
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logarithms of the moduli of the nonzeros. MC29 reduces that sum in a global sense and
can provide benefits over a wide range of sparse matrices. The routine MC30 in the
HSL library is a variant of MC29 for symmetric matrices. Scaling can also be combined
with permutations (see [?] and the HSL routine MC64). A matrix is first permuted to
maximise the product of the absolute values of the entries on the diagonal. Then the
matrix is scaled so that the diagonal entries equal one and the off-diagonals are less
than or equal to one. This has been shown [?] to be useful for finding a good sequence
of pivots for sparse direct solvers and for building good incomplete LU preconditioners
for iterative methods.

In the 1960s, optimality properties were established in terms of condition numbers
for scaled matrices all of whose rows or columns have norm one [?, ?, ?]. In particular,
the optimal scaling of a matrix A which minimizes the condition number in the ∞-
norm is characterized by both DAE and E−1A−1D−1 having equal row sums of
absolute values [?]. Other optimality results for one sided scaling, i.e., DA or AE are
also shown [?], again based on the equivalence of the norms of rows or columns in the
∞- and 1-norms.

The paper is organized as follows. In Section 2 we introduce the proposed algo-
rithm, derive a convergence analysis, and show some particular properties it yields for
scaled matrices. In Section 3, we consider the algorithm in norms other than the ∞-
norm. Following a discussion in [?], we establish precise conditions for convergence in
the 1-norm, and we look at the rate of convergence, too. We present numerical results
in Section 4 and finish with some concluding remarks in Section 5. While proving
the convergence of the proposed algorithm in 1-norm, we deviate somewhat from the
approach in [?]. An appendix includes a detailed explanation of the differences.

2. The algorithm. Consider a general m× n real matrix A. For i = 1, . . . ,m,
let ri = aTi∗ ∈ Rn×1 denote the ith row of A as a vector, and for j = 1, . . . , n, let
cj = a∗j ∈ Rn×1 denote the jth column of A. Let R and C denote the m ×m and
n× n diagonal matrices given by:

R = diag
(√
‖ri‖∞

)
i=1,...,m

and C = diag

(√
‖cj‖∞

)
j=1,...,n

(2.1)

where ‖ · ‖∞ stands for the ∞-norm of a real vector (that is the maximum entry in
absolute value; sometimes called the max norm). If a row (or a column) in A has all
entries equal to zero, we replace the diagonal entry in R (or C respectively) by 1. In
the following, we will assume that this does not happen.

One can scale the matrix A on both sides, forming the scaled matrix Â as

Â = R−1AC−1 . (2.2)

The idea of the algorithm we propose is to iterate on that process, resulting in
Algorithm 1. The algorithm converges when

max
1≤i≤m

{
|1− ‖r(k)i ‖∞|

}
≤ ε and max

1≤j≤n

{
|1− ‖c(k)j ‖∞|

}
≤ ε (2.3)

for a given value of error tolerance parameter ε > 0.

2.1. A salient property. We highlight that the proposed iterative scaling pro-
cedure preserves the symmetry in the original matrix. In fact, this is one of our main
motivations. If the given matrix A is symmetric, then the diagonal matrices R and
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Algorithm 1 Simultaneous row and column scaling in the ∞-norm

1: A(0) ← A
2: D(0) ← Im
3: E(0) ← In
4: for k = 0, 1, 2, . . . until convergence do

5: R← diag

(√
‖r(k)i ‖∞

)
i=1,...,m

I r
(k)
i is the ith row of A(k)

6: C← diag

(√
‖c(k)j ‖∞

)
j=1,...,n

I c
(k)
j is the jth column of A(k)

7: A(k+1) ← R−1A(k)C−1

8: D(k+1) ← D(k) R−1

9: E(k+1) ← E(k) C−1

C in (2.1) are equal and, consequently, matrix Â in (2.2) is symmetric, as is the case
for the matrices A(k) at any iteration in Algorithm 1. This is not the case for most
scaling algorithms which alternately scale rows followed by columns or vice-versa.

In the case of unsymmetric matrices, one may consider the use of the Sinkhorn–
Knopp iterations [?] with the ∞-norm in place of the 1-norm. This method simply
normalizes all rows and then all columns of A, and iterates on this process until
convergence. In ∞-norm, the convergence is achieved after one single step. Because
of its simplicity, this method is very appealing. There are however differences. The
Sinkhorn–Knopp iteration may provide different results when applied to AT . On the
other hand Algorithm 1 provides exactly the same results when applied to A or AT

in the sense that the scaled matrix obtained on AT is the transpose of that obtained
on A. We have quoted the Sinkhorn–Knopp method in particular because it has been
originally proposed to obtain doubly stochastic matrices (that is nonnegative matrices
with all rows and columns of 1-norm equal to one), and we shall come back to this
issue with respect to Algorithm 1 in Section 3.

2.2. Convergence rate. The proposed algorithm convergences quickly to a ma-
trix whose rows and columns have ∞-norm equal to one as stated below.

Theorem 2.1. If A is an m × n matrix with no zero rows or columns, then
Algorithm 1 produces a sequence of matrices A(0),A(1), . . . which converge linearly
to a matrix all of whose rows and columns have infinity norm equal to one. The
asymptotic rate of convergence is 1/2.

Proof. After the first iteration of the algorithm, all the entries in A(1) are less
than or equal to one in absolute value. This is because all entries aij in A are divided

by the square roots of two numbers, ‖r(k)i ‖∞ and ‖c(k)j ‖∞ respectively, each one of
them being greater than or equal to |aij | itself.

For any subsequent iteration (k ≥ 1), consider the ∞-norm of any row r
(k)
i or

column c
(k)
j , and let indices ` and p satisfy the equalities |a(k)ip | = ‖r

(k)
i ‖∞ and |a(k)`j | =

‖c(k)j ‖∞. With these notations, we can easily verify that both entries a
(k+1)
ip and

a
(k+1)
`j in the scaled matrix A(k+1) are greater, in absolute value, than the square root

of the corresponding value at iteration k, and are still less than one. We can write

1 ≥ |a(k+1)
ip | =

|a(k)ip |√
‖r(k)i ‖∞

√
‖c(k)p ‖∞

=

√
|a(k)ip |√
‖c(k)p ‖∞

≥
√
|a(k)ip |
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since |a(k)ip | = ‖r
(k)
i ‖∞ and ‖c(k)p ‖∞ ≤ 1 for any k ≥ 1. Similarly,√

|a(k)`j | ≤ |a
(k+1)
`j | ≤ 1 ,

for any k ≥ 1. From this, we can write that the iterations in Algorithm 1 provide
scaled matrices A(k), k = 1, 2, . . . with the following properties

for all k ≥ 1, 1 ≤ i ≤ m,
√
‖r(k)i ‖∞ ≤ |a

(k+1)
ip | ≤ ‖r(k+1)

i ‖∞ ≤ 1 , (2.4)

and

for all k ≥ 1, 1 ≤ j ≤ n,
√
‖c(k)j ‖∞ ≤ |a

(k+1)
`j | ≤ ‖c(k+1)

j ‖∞ ≤ 1 , (2.5)

which shows that both row and column norms must converge to 1. To conclude our
demonstration, we just need to see that for all i

1− ‖r(k+1)
i ‖∞ =

1− ‖r(k+1)
i ‖2∞

1 + ‖r(k+1)
i ‖∞

≤ 1− ‖r(k)i ‖∞
1 + ‖r(k+1)

i ‖∞
,

and that similar equations hold for the columns as well.
A small example [?] shows that this asymptotic rate is sharp. Let us consider the

following 2× 2 matrix with a badly scaled row

A =

(
α α
1 1

)
.

If α� 1, then iteration k (k ≥ 1) of the algorithm provides the following matrices:

D(k) =

(
α−(1−

1

2k
) 0

0 1

)
, A(k) =

(
α

1

2k α
1

2k

1 1

)
, E(k) = I2 .

When the algorithm converges, the scaled matrix Â is the matrix with all ones, D
has its first diagonal entry equal to α−1, and E stays as the identity matrix. In this
case, the linear rate of 1

2 is met.

2.3. Comparison with Bunch’s algorithm. As we have stated before, Algo-
rithm 1 is well suited for symmetric scaling of symmetric matrices. For the ∞-norm
case, Bunch [?] also developed an efficient symmetric scaling algorithm. We highlight
some differences between the two algorithms. Bunch’s algorithm processes the rows
of the lower triangular part of the given matrix in such a way that the largest entry
seen in each row is made to be ±1 in the partially scaled matrix. At the end, the
scaling found for the ith row is applied to the ith column of the whole matrix. Bunch’s
algorithm runs in O(nnz)-time, equivalent to one iteration of the proposed algorithm.
Since the scaling value of a row is calculated using the scaled values of its nonzero
entries in the lower triangular part, there is a dependency between the computation of
the scaling values. The dependencies can be an obstacle to reduce the running time
in a parallel computing environment. For example, Bunch’s algorithm has to run
sequentially to scale a tridiagonal matrix. On the other hand, Algorithm 1 is more
amenable to parallelism (as was shown before [?]). One may consider permuting a ma-
trix to take advantage of parallelism. But care should be taken, as Bunch’s algorithm
is sensitive to symmetric permutations applied to the original matrix (any diagonal
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nonzero can be symmetrically permuted to the first position so that that entry is one
in the scaled matrix). On the other hand, the proposed algorithm is independent of
any permutations (not even necessarily symmetric) applied to the original matrix in
the sense that the scaling matrices computed for the permuted matrix would be equal
to the permuted scaling matrices computed for the original matrix.

3. Extensions to other norms. A natural idea would be to change the norm
used in Algorithm 1, and to try the 2-norm or the 1-norm because of the optimal
properties they induce (see [?, ?]), and still expect convergence (where all rows and
columns are of length 1 in the corresponding norm). We shall see, in the remainder
of this section, that this will usually, but not always, work and we investigate the po-
tential and limitations of such extensions. Compared to the ∞-norm, where different
algorithms can raise very different solutions, scalings in the 1-norm or the 2-norm,
when they exist, can be considered as unique as the scaled matrix is essentially unique.

With respect to the extension of Algorithm 1 to the scaling of matrices in other
norms, the case of the 1-norm is central. Indeed, Rothblum et al. [?, page 13] showed
that the problem of scaling a matrix A in the `p-norm, for 1 < p < ∞, can be
reduced to the problem of scaling the pth Hadamard power of A, i.e., the matrix
A[p] = [apij ], in the 1-norm. We can apply that discussion to Algorithm 1 by replacing

the matrix A with A[p], and then by taking the Hadamard pth root, e.g., D
[1/p]
1 =

[d
1/p
ii ], of the resulting iterates. For this reason, we shall analyse the convergence

properties of Algorithm 1 for the 1-norm only, knowing that these will implicitly
drive the conclusions for any of the `p norms, for 1 < p <∞.

3.1. Background. The idea of equilibrating a matrix such that the 1-norm of
the rows and columns are all 1 is not new, dating back to at least the 1930s (see some
historical remarks by Knight [?]). Here, we briefly review some of the previous work.

Sinkhorn and Knopp [?] studied a method for scaling square nonnegative matrices
to doubly stochastic form, that is a nonnegative matrix with all rows and columns
of equal 1-norm. Sinkhorn [?] originally showed that: Any positive square matrix
of order n is diagonally equivalent to a unique doubly stochastic matrix of order n,
and the diagonal matrices which take part in the equivalence are unique up to scalar
factors. Later, a different proof for the existence part of Sinkhorn’s theorem with
some elementary geometric interpretations was given [?].

Sinkhorn’s result was further extended to the case of nonnegative, nonzero ma-
trices [?]. A few definitions are necessary to state the result. A square n× n nonneg-
ative matrix A ≥ 0 is said to have support if there exists a permutation σ such that
ai,σ(i) > 0, for 1 ≤ i ≤ n. Note that matrices not having support are matrices for
which no full transversal can be found (see [?, page 107]), i.e., there is no column per-
mutation making the diagonal zero-free, and are thus structurally singular. A matrix
A is said to have total support if every positive entry in A can be permuted into a
positive diagonal with a column permutation. A nonnegative nonzero square matrix
A of size n > 1 is said to be fully indecomposable if there does not exist permutation
matrices P and Q such that PAQ is of the form(

A11 A12

0 A22

)
, (3.1)

with A11 and A22 being square matrices. The term bi-irreducible is also used for fully
indecomposable matrices [?, Chapter 6]. Sinkhorn and Knopp [?] established that
their scaling algorithm, which simply iterates on normalizing all rows and columns
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in the matrix A alternately, converges to a doubly stochastic limit Â if and only
if the matrix A has support. The doubly stochastic limit Â can be represented as
DAE (meaning that A and Â are diagonally equivalent) if and only if A has total
support and, if the support of A is not total, then there must be a positive entry in
Â converging to 0. Additionally, it has been shown that the diagonal matrices D and
E, when they exist, are unique up to some scalar factors if and only if the matrix A is
fully indecomposable [?]. Brualdi et al. [?] independently showed the same diagonal
equivalence between A and a doubly stochastic matrix, when A is a direct sum of
fully indecomposable matrices. It has been shown that a matrix A has total support
if and only if there exist permutation matrices P and Q such that PAQ is a direct
sum of fully indecomposable matrices [?, Theorem 1 (ii)].

Different contributions have also been made in the study of convergence of the
Sinkhorn–Knopp method under various hypothesis. Geometric convergence rate for
positive [?] and nonnegative matrices with total support [?] have been shown. The
converse of the second result has also been established [?], i.e., geometric convergence
of the Sinkhorn–Knopp algorithm implies total support for a nonnegative matrix. The
explicit rates of convergence for fully indecomposable matrices are given by Knight [?].

Parlett and Landis [?] present three iterative scaling algorithms with experimental
evidence of better average and worst-case convergence behavior than the Sinkhorn–
Knopp method (in at least one of the three algorithms). They also give a generalized
version of the convergence theorem of Sinkhorn and Knopp [?], including a characteri-
zation of scaling algorithms that will converge to a doubly stochastic matrix when the
starting matrix A has support. Such algorithms are called diagonal product increasing
(DPI) algorithms. In Appendix, we recall and partially extend Parlett and Landis’s
results [?, Theorem 1]. These extensions are needed to specify generic properties that
our algorithm fulfills which are sufficient to ensure convergence of scaling algorithms
in the 1-norm in general.

In the remainder of this section, we first establish that Algorithm 1 converges in
the 1-norm as well as in any p-norm, for any p <∞, so long as A satisfies appropriate
conditions. We also analyze the convergence rate of the algorithm in the 1-norm
(separately for symmetric and unsymmetric matrices), allowing a fuller comparison
with other balancing algorithms.

3.2. Convergence analysis. Algorithm 1 produces a sequence of matrices di-
agonally equivalent to the starting matrix A = A(0) using the iteration

A(k) =
(
a
(k)
ij

)
= D(k)AE(k), k = 1, 2, . . . ,

D(k) = diag
(
d
(k)
1 , . . . , d

(k)
n

)
,

E(k) = diag
(
e
(k)
1 , . . . , e

(k)
n

)
,

(3.2)

where D(0) = E(0) = I. For convenience, let r
(k)
i , i = 1, . . . , n, and c

(k)
j , j = 1, . . . , n,

denote the 1-norm of rows and columns respectively:

r
(k)
i = ‖r(k)i ‖1 =

n∑
j=1

|a(k)ij | ,

c
(k)
j = ‖c(k)j ‖1 =

n∑
i=1

|a(k)ij | ,
(3.3)
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so that d
(k)
i = 1/

√
r
(k)
i and e

(k)
j = 1/

√
c
(k)
j . Since A and |A| scale in the same

way we can assume that A ≥ 0. Under this simplification, the 1-norms of the rows

and columns reduce to the row and column sums respectively, r
(k)
i =

∑n
j=1 a

(k)
ij and

c
(k)
j =

∑n
i=1 a

(k)
ij , and to generalize our results to any matrix, one just needs to extend

the definition of a doubly stochastic matrix so that the absolute value of the matrix
under consideration is doubly stochastic.

Theorem 3.1. Given the sequence (3.2) of diagonal equivalents for A, in which

a
(k+1)
ij =

a
(k)
ij√

r
(k)
i

√
c
(k)
j

, 1 ≤ i, j ≤ n,

with r
(k)
i and c

(k)
j given by (3.3):

1. If A has support, then S = limk→∞A(k) exists and is doubly stochastic.
2. If A has total support, then both D = limk→∞D(k) and E = limk→∞E(k)

exist and S = DAE.

We will prove this theorem in a more general setting, following an approach by
Parlett and Landis [?], by establishing that the results in Theorem 3.1 hold for any
iterative scaling algorithm having the following properties.

(P1∗) both sequences of rows and column scaling factors products

n∏
i=1

d
(k)
i and

n∏
i=1

e
(k)
i , k = 1, 2, . . .

are monotonically increasing;
(P2) the 1-norm of rows and columns respectively converge to 1, i.e.,

lim
k→∞

r
(k)
i = 1 and lim

k→∞
c
(k)
j = 1, 1 ≤ i, j ≤ n . (3.4)

The full consequences of these properties, not least that they imply convergence of
DPI algorithms, are detailed in the Appendix. We have made minor changes to the
properties used by Parlett and Landis [?] so as to include Algorithm 1 in the analysis.
In summary, our property (P1∗) is more restrictive than that of Parlett and Landis
who require the product of the products to be monotonically increasing. Property
(P2) relaxes the two other hypothesis made by Parlett and Landis when defining
DPI algorithms, but is sufficient, combined with (P1*), to obtain the conclusions in
Theorem 3.1.

Before the proof, we note the following observations. By the arithmetic-geometric
mean inequality, we have

n∏
i=1

r
(k+1)
i ≤

(
1

n

n∑
i=1

r
(k+1)
i

)n
=

 1

n

∑
1≤i,j≤n

a
(k)
ij√

r
(k)
i

√
c
(k)
j


n

for all k, with the same inequality for

n∏
j=1

c
(k+1)
j since the sum of the column sums must

equal the sum of the row sums. Additionally, using the Cauchy-Schwarz inequality
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on the vectors

(√
a
(k)
ij /

√
r
(k)
i

)
1≤i,j≤n

and

(√
a
(k)
ij /

√
c
(k)
j

)
1≤i,j≤n

,

∑
1≤i,j≤n

a
(k)
ij√

r
(k)
i

√
c
(k)
j

≤

√√√√ ∑
1≤i,j≤n

a
(k)
ij

r
(k)
i

√√√√ ∑
1≤i,j≤n

a
(k)
ij

c
(k)
j

=
√
n
√
n ,

and thus, for all k ≥ 0, we have

n∏
i=1

r
(k+1)
i ≤

(
1

n

n∑
i=1

r
(k+1)
i

)n
≤ 1 and

n∏
j=1

c
(k+1)
j ≤

 1

n

n∑
j=1

c
(k+1)
j

n

≤ 1 . (3.5)

Notice that after the first iteration all the entries in matrix A(k) are less than or equal

to 1, since both r
(k)
i and c

(k)
j are greater than a

(k)
ij by construction.

Proof. [Theorem 3.1] By (3.5) and by the fact that the iterates in Algorithm 1
satisfy ∏n

i=1 d
(k+1)
i∏n

i=1 d
(k)
i

=
1√∏n
i=1 r

(k)
i

(and similarly for the column scaling factors) we see that property (P1∗) holds.
Establishing (P2) is not quite so straightforward. From the arithmetic-geometric

mean inequality and (3.5),

n∏
i=1

r
(k)
i c

(k)
i ≤

{
n∑
i=1

1

2n

(
r
(k)
i + c

(k)
i

)}2n

≤ 1 .

From (P1∗) and the fact that all the elements a
(k)
ij for k ≥ 1 are bounded above by 1,

we can conclude from Lemma A.2 of Appendix that limk→∞ sk = ξ > 0 exists, where

sk =
∏n
i=1 d

(k)
i e

(k)
i , and consequently that

lim
k→∞

n∏
i=1

√
r
(k)
i c

(k)
i = lim

k→∞

sk
sk+1

= 1 .

We conclude that

lim
k→∞

n∏
i=1

r
(k)
i c

(k)
i = 1 and lim

k→∞

n∑
i=1

1

2n

(
r
(k)
i + c

(k)
i

)
= 1 . (3.6)

Now, since all the elements in A(k) are less than 1 after the first iteration, each of

the two sequences (r
(k)
i )k≥1 and (c

(k)
j )k≥1, for all 1 ≤ i, j ≤ n, are bounded. Let us

introduce the sequence (v(k))k≥1 of the 2n-vectors

v(k) = (r
(k)
1 , . . . , r(k)n , c

(k)
1 , . . . , c(k)n ) ,

which is also bounded in R2n of finite dimension. Consider then any convergent
subsequence (v(q))q and let

xi = lim
q→∞

r
(q)
i , 1 ≤ i ≤ n , and yj = lim

q→∞
c
(q)
j , 1 ≤ j ≤ n .
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From (3.6), we can write

n∏
i=1

xiyi =

{
n∑
i=1

1

2n
(xi + yi)

}2n

= 1 ,

and since equality holds in the arithmetic-geometric mean inequality only if all the
elements are equal, x1 = · · · = xn = 1 = y1 = · · · = yn. Therefore any conver-
gent subsequence of the bounded sequence (v(k))k≥1 in finite dimensional space must
have the same limit (a vector of ones), which implies that the sequence (v(k))k≥1 is
necessarily convergent and that (3.4) holds.

Since our algorithm fulfills properties (P1∗) and (P2), it converges. Additionally,
since the computation of the scaling factors in Algorithm 1 is only based on the
row and column sums in matrix A(k) at each iteration, we see that the algorithm is
permutation insensitive, and it does not mix information from independent subsets
of entries residing in different blocks of a decomposable matrix A. This can be used
to show that the scaling matrices also exist (see Corollary A.4 and accompanying
discussion in the Appendix) when A has total support.

Tracking the computations performed by Algorithm 1 it is straightforward to
establish that it preserves symmetry.

Corollary 3.2.
1. If A is symmetric and has support, then Algorithm 1 in the 1-norm builds

a sequence of symmetric scalings of A converging to a symmetric doubly
stochastic limit.

2. If A is symmetric and has total support, then A is symmetrically equiv-
alent to a symmetric doubly stochastic matrix S, and Algorithm 1 in the
1-norm builds a convergent sequence of diagonal matrices D(k) such that
S = limk→∞D(k)AD(k).

3.3. Rate of convergence for symmetric matrices. Let e be a vector of ones
(dimension should be clear) and D(x) = diag(x) for x ∈ Rn. Note that x = D(x)e
and D(D(x)y) = D(x)D(y) = D(y)D(x). When we take the square root of a vector
this should be interpreted componentwise (see, e.g., (3.8)). We will also assume that
A ≥ 0 and that it has no zero rows.

We first treat the case when A is symmetric. Then the 1-norm version of Algo-
rithm 1 loops the following steps (where A(0) = A and E(0) = I)

R = D(A(k)e)1/2, E(k+1) = R−1E(k), A(k+1) = R−1A(k)R−1. (3.7)

Note that A(k) = E(k)AE(k) and we can come up with a more compact form of the
algorithm as follows. Let xk be the vector such that D(xk) = E(k). Then

E(k+1) = R−1E(k) = D(E(k)AE(k)e)−1/2E(k)

= D(D(xk)Axk)−1/2D(xk) = D(xk)−1/2D(Axk)−1/2D(xk)

= D(xk)1/2D(Axk)−1/2.

In other words, we can carry out the iteration simply working with the vectors xk.
Namely, let x0 = e (say) and form

xk+1 =

√
xk
Axk

, (3.8)
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where the division is performed componentwise. If A is unsymmetric we can replace it

with

(
0 A
AT 0

)
and extract the row and column scalings from the top and bottom

half of xk.
The reason for introducing the compact form is to allow us to exploit some stan-

dard theory for fixed point iteration. In the 1-norm, the balancing problem can be
viewed as an attempt to find the positive solution of the nonlinear equation

D(x)Ax = e . (3.9)

This can be rewritten in many ways. In particular, noting that D(x)e = D(Ax)−1e,
we can write

x = D(x)e =
√
D(x)2e =

√
D(x)D(Ax)−1e =

√
D(Ax)−1x .

In other words (3.8) is a fixed point iteration for solving (3.9). Note that Sinkhorn–
Knopp can also be framed in terms of a fixed point iteration for solving (3.9), although
some care needs to be taken to ensure that the correct iterates are extracted [?].

The consequence of this discussion is that we can prove a result on the asymptotic
convergence rate of the algorithm by bounding the norm of the Jacobian of f(x) =√
D(Ax)−1x in the environs of a fixed point. We restrict x so that it lies in the

positive cone Rn+ to ensure that all our diagonal matrices are invertible, and we only
take the square roots of positive numbers. Not only is f(x) continuous but it is twice
differentiable. Differentiating f(x) term by term, we find that its Jacobian can be
written as

J(x) = −1

2
D(x)1/2D(Ax)−3/2A +

1

2
D(Ax)−1/2D(x)−1/2. (3.10)

To establish the asymptotic rate of convergence, we want to bound ‖J(x)‖ at the
fixed point x∗. Substituting the identity D(Ax∗) = D(x∗)

−1 into (3.10) gives

J(x∗) = −1

2
D(x∗)

1/2D(x∗)
3/2A +

1

2
D(Ax∗)

1/2D(x∗)
−1/2

=
1

2

(
I−D(x∗)

2A
)

=
1

2
D(x∗) (I−D(x∗)AD(x∗))D(x∗)

−1

=
1

2
D(x∗)(I−P)D(x∗)

−1,

where P is symmetric and stochastic. In a neighbourhood of x∗ we can bound the
asymptotic rate of convergence of the iteration by the largest eigenvalue of (I−P)/2.
Since the spectrum of P lies in [−1, 1], the bound is (1− λmin(P))/2.

We can couple our observations with the convergence results from Section 3 to
make a strong statement about the performance of the algorithm.

Theorem 3.3. Let A ≥ 0 be symmetric and be fully indecomposable. Then for
any vector x0 > 0, the iteration (3.8) will converge to the unique positive vector x∗
such that D(x∗)AD(x∗) = P is doubly stochastic and the convergence is asymptotically
linear at the rate (1− λmin(P))/2 < 1.

Proof. We already know that (3.8) converges from Theorem 3.1. The uniqueness
of x∗ is well known (see, for example, Lemma 4.1 of Knight [?]).

Since A is fully indecomposable, so is P. Such a doubly stochastic matrix is
primitive [?], and hence it has a single simple eigenvalue of modulus 1. Therefore



SYMMETRIC MATRIX SCALING 11

λmin(P) > −1 and the asymptotic rate of convergence, established above, is bounded
below one.

Note that Theorem 3.1 establishes the convergence of (3.8) for matrices with
total support. If a matrix has total support but is not fully indecomposable then
it can be permuted symmetrically into a block diagonal matrix where each block is
irreducible [?, Lemma 3.1]. Now if an irreducible block is also fully indecomposable
then we can apply Theorem 3.3 to it. Suppose that a block is irreducible but not
fully indecomposable. It must be permutable to the form (3.1). Since no zero block
in an irreducible matrix can be permuted symmetrically to lie in the bottom left
hand corner, the lack of indecomposability manifests itself in a diagonal block. That

is, there is a symmetric permutation of the block to

(
0 B
BT Z

)
where B is fully

indecomposable. Since A has total support, Z = 0. For a matrix with this structure,
we can still give the rate of convergence: it is covered by a general convergence result
for (3.8) on unsymmetric matrices, which we establish next.

3.4. Rate of convergence for unsymmetric matrices. Much of our anal-

ysis carries through if A is unsymmetric and we work with

(
0 A
AT 0

)
instead:

using (3.7) on this matrix is exactly the same as running Algorithm 1 on A. At a
fixed point, the Jacobian matrix can be written as

J(x∗) =
1

2
D(x∗)

(
I−

(
0 P
PT 0

))
D(x∗)

−1, (3.11)

where P is doubly stochastic but may be unsymmetric. There is a snag, though.
Notice that (

0 P
PT 0

)(
e
−e

)
=

(
−e
e

)
,

from which we conclude that −1 is an eigenvalue of J(x∗), and we can no longer apply
the contraction mapping theorem. Nor is the fixed point unique: if P = DAE, then
αD and E/α give another solution.

A similar problem arises in trying to apply the contraction mapping theorem in
the analysis of the Sinkhorn–Knopp algorithm [?]. Here, as there, this difficulty is
overcome once we note that we do not really care which fixed point we end up at, just
that we get closer and closer to the set of fixed points. But we know this happens:
we have a global convergence result (Theorem 3.1).

Theorem 3.4. Let

A =

(
0 B
BT 0

)
where B ∈ Rn×n is nonnegative and fully indecomposable, and let Q be the doubly
stochastic matrix one gets from diagonally balancing B.

The iteration (3.8) converges linearly for all initial vectors x0 > 0 with asymptotic
rate of convergence ρ = (1+σ2(Q))/2 where σ2(Q) is the second largest singular value
of Q.

As with Theorem 3.3, we can extend Theorem 3.4 to cover unsymmetric matrices
which are not fully indecomposable but have total support by working with a block
diagonal permutation.
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Proof. [Theorem 3.4] Convergence of the algorithm for any starting vector is
guaranteed by Theorem 3.1. Let us assume that the limit point is x∗ = [rT cT ]T .
Note that the set of fixed points of (3.8) can be written as

S =

{(
βr
1
β c

)
, β ∈ R+

}
.

Let ε > 0 and choose K so that for k > K, ‖xk − x‖∗ < ε where we choose (for
reasons we will explain)

‖x‖∗ =

√
xTD(x∗)−2x

2n
.

We will show that

min
s∈S
‖xk+1 − s‖∗ ≤ ρmin

s∈S
‖xk − s‖∗ + τk , (3.12)

where τk = O(ε2), and hence we can infer the desired convergence rate for small
enough values of ε. Note that x∗ may not be the nearest element to xk in S: the
nearest point is

sk =

(
αr
1
αc

)
where α = 1 + εα and εα = O(ε). Now

xk+1 = f(xk) = f(x∗ + p) = x∗ + J(x∗)p + q ,

where ‖p‖∗ < ε and ‖q‖∗ = O(ε2). From (3.11) we can deduce that the eigenvalues
of J(x∗) are

λi =
1

2
(1 + σi(Q)), λi+n =

1

2
(1− σn+1−i(Q)), i = 1, 2, . . . , n,

where σi(Q) is the ith singular value of Q. Since B is fully indecomposable, then so
is Q, and it is primitive. Hence 1 = σ1(Q) > σ2(Q) ≥ · · · ≥ σn(Q) ≥ 0. Let vi be
the eigenvector of J(x∗) associated with λi such that ‖vi‖∗ = 1 and write

p =

2n∑
i=1

µivi .

From (3.11) we know that J(x∗) is similar to a symmetric matrix. Our choice of norm
is motivated by our need to control the size of J(x∗)p for all k > K. Since the vi
form an orthonormal set with respect to the inner product that induces our norm,
|µi| ≤ ‖p‖∗ < ε, for all i.

Noting that λ1 = 1, v1 = [rT − cT ]T , λ2n = 0 and v2n = x∗, we have

xk+1 = x∗ + µ1v1 +

2n−1∑
i=2

λiµivi + q

=

(
(1 + µ1)r
(1− µ1)c

)
+

2n−1∑
i=2

λiµivi + q

=

(
γr

c/γ

)
+

(
0
ηc

)
+

2n−1∑
i=2

λiµivi + q
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where γ = (1 + µ1) = 1 +O(ε) and η = −µ2
1/(1 + µ1).

In order to establish (3.12), we need to relate the size of the sum in our expression
for xk+1 to mins∈S ‖xk − s‖∗ = ‖xk − sk‖∗. Since

xk − sk = p + x∗ − sk = p +

(
(1− α)r

(1− 1/α)c

)
=

2n∑
i=1

µivi +
1− α2

2α
v1 −

(α− 1)2

2α
v2n,

we have∥∥∥∥∥
2n−1∑
i=2

λiµivi

∥∥∥∥∥
∗

≤ λ2

√√√√2n−1∑
i=2

‖µivi‖2∗ = λ2

∥∥∥∥∥
2n−1∑
i=2

µivi

∥∥∥∥∥
∗

≤ λ2 ‖xk − sk‖∗ ,

and letting

τk =

∥∥∥∥( 0
ηc

)
+ q

∥∥∥∥
∗

= O(ε2) ,

we are done.
Our rate of convergence result allows a direct comparison with other scaling al-

gorithms. In particular, it is shown [?] that the Sinkhorn–Knopp algorithm also
converges linearly with an asymptotic rate of convergence of σ2(Q). Note that since
σ2(Q) < 1, we have ρ > σ2(Q). Hence the bound on the asymptotic rate of conver-
gence (and empirical evidence suggests that it is generally a sharp bound) is neces-
sarily larger than the corresponding bound for the Sinkhorn–Knopp algorithm.

However, for symmetric matrices the comparison is not so clear cut. The asymp-
totic rates are λ2(P) for the Sinkhorn–Knopp algorithm versus (1 − λmin(P))/2 for
Algorithm 1. For sparse matrices we can expect both of these factors to be close to
one (especially if the matrix is close to being reducible). But note that when |A| is
symmetric positive definite, the rate of convergence of Algorithm 1 is guaranteed to
be less than 1/2, since P is symmetric positive definite, too.

Often, though, we only need a modest degree of scaling to induce beneficial effects
in linear solvers. Here, the fact that Algorithm 1 retains symmetry is a distinct advan-
tage: even though a symmetric matrix balanced by the Sinkhorn–Knopp algorithm
will (in the limit) be symmetric, the intermediate scalings lose this property.

A number of balancing algorithms [?, ?] have been developed based on Newton
iterations for solving (3.9). While these retain symmetry in the intermediate scalings
and can achieve quadratic convergence asymptotically, they can behave erratically
when the iterates are far from being truly balanced, a phenomenon we have not seen
with Algorithm 1. Typically, we have found that this erratic behaviour occurs1 when
the linear systems in the Newton step are singular (but consistent) and may be due
to unwanted elements of the null-space being included in the early iterates. In future
work, it may be worth investigating whether Newton-based methods can be employed
in the applications we discuss in our numerical experiments. One limitation of these
methods is that they are not designed for ∞-norm scaling.

4. Numerical experiments. We have implemented the proposed algorithm in
Matlab (version R2009a), and compared it against our implementation of Bunch’s and
Sinkhorn–Knopp algorithms. We have experimented with a set of matrices obtained

1Seen for some matrices from the GHS indef group from the UFL collection.
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from the University of Florida Sparse Matrix Collection (UFL) available at http:

//www.cise.ufl.edu/research/sparse/matrices/. The matrices in our data set
satisfy the following properties: real, 1000 ≤ n ≤ 121000, 2n ≤ nnz ≤ 1790000,
without explicit zeros, fully indecomposable, not a matrix with nonzeros only in the
set {−1, 1}. There were a total of 224 such matrices at the time of experimentation.
In seven out of those 224 matrices, Matlab’s condest function failed to compute
an estimated condition number in a reasonable amount of time, on three matrices
condest gave inf as the estimated condition number, and one matrix was reported
to be rank-deficient at the UFL collection. Therefore, we give results on 213 matrices,
among which 64 are unsymmetric, 46 are symmetric positive definite (SPD), and 103
are symmetric but not positive definite.

We present two different sets of experiments. In the first one, we compare dif-
ferent scaling algorithms. In the second one, we investigate the merits of using the
proposed scaling algorithm in solving linear systems with a direct method. In terms
of convergence, there is little difference in theory which p-norm we choose to scale
by in Algorithm 1 (apart from the ∞-norm). But to investigate the potential of the
algorithm in practice we have tested the both the 1-norm and 2-norm versions along-
side the ∞-norm. For comparison, we have also tested the 1- and 2-norm versions of
the Sinkhorn–Knopp algorithm as well as Bunch’s∞-norm algorithm. For an unsym-

metric matrix A, we apply Bunch’s algorithm to

(
0 AT

A 0

)
which is equivalent

to applying the Sinkhorn-Knopp algorithm using the ∞-norm (SK-inf). For symmet-
ric matrices (both general and SPD), we did not include results with SK-inf, as this
alternative loses the symmetry. For SPD matrices, we also use the reciprocal of the
square root of diagonal entries as the scaling matrices (on both sides). We refer to
this algorithm as rdiag.

4.1. Condition numbers and iterations. We use the performance profiles [?]
to assess the effect of the scaling algorithms on the condition number. In order to
generate these profiles, we compute the condition numbers of a given matrix and its
scaled versions (with different scaling algorithms). This gives us a set of condition
estimates {χ1, . . . , χp} corresponding to p different scaling algorithms (the condition
number of the original matrix can be thought of resulting from a scaling algorithm) for
a given matrix. We then compute {χ1/χ, . . . , χp/χ} where χ is the smallest value in
the set. We take the logarithms of these ratios to avoid large numbers, and designate
the resulting number as the performance of an algorithm on the given matrix. Then,
we measure the percentage of the number of matrices in which the performance of
an algorithm is less than or equal to a given number τ . Plotting these measurements
gives the performance profiles shown in Fig. 4.1 (the three subfigures correspond
to the three classes of matrices). In other words, for a given value of τ , a plot
in Fig. 4.1 shows the fraction of the number of matrices for which the corresponding
scaling algorithm obtains a condition estimate within eτ of the smallest (among all the
condition estimates). A high fraction indicates that a given algorithm regularly keeps
the estimated condition number under control and hence indicates that algorithm’s
effectiveness (particularly if the fraction is high for small values of τ).

In these experiments, all the iterative scaling methods are run with an error
tolerance of 1.0e-4 and with the number of iterations limited to the matrix dimension.
All condition numbers are computed using Matlab’s condest function. For clarity, the
profiles for Sinkhorn–Knopp algorithm in 1- and 2-norms are not shown. Generally
they agreed with the proposed algorithm in the corresponding norms to at least four

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
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(b) General symmetric matrices
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Fig. 4.1. Performance profiles for the condition number estimates of unsymmetric matri-
ces 4.1(a), general symmetric matrices 4.1(b), and SPD matrices 4.1(c). Horizontal axis in each
subfigure corresponds to τ . A marks the condition number estimate of the original matrix; B marks
that of Bunch’s algorithm; inf, 1, and 2 mark that of the proposed algorithm with ∞-, 1-, and 2-
norms, SK-inf marks that of Sinkhorn–Knopp with ∞-norm and rdiag marks that of the reciprocal
square root of the diagonal scaling for SPD matrices.

significant digits—exceptions to this rule tend to coincide with cases where either the
proposed algorithm or Sinkhorn–Knopp had not converged in n iterations.

In all of the subfigures of Fig. 4.1, the profiles of the scaling algorithms (with the
single exception of rdiag) are higher than the profile representing no scaling (shown
with A), for any range of τ . Therefore, one concludes that the scaling algorithms
improve the estimated condition number in an overwhelming majority of cases. For
unsymmetric matrices, the algorithms that work with the ∞-norm (inf, SK-inf,
and B) outperform (or, have higher profiles than) the 1- and 2-norm scalings until
τ > 3.2 after which the 2-norm scaling takes over. For general symmetric matrices,
a clear pattern is seen in Fig. 4.1(b). This time, the 2-norm scaling has the highest
performance profile, marginally beating the 1-norm scaling algorithm which in turn
appears superior to the proposed algorithm in the ∞-norm over all shown ranges of
τ . Bunch’s algorithm is ranked most poorly. For the SPD matrices, all algorithms
(except rdiag) are almost equal if one considers estimated condition numbers that
are within e of the best, as the fraction of the test cases that are below τ = e are
above 0.90.

We give further details in Table 4.1 which shows that all of the scaling algorithms
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Table 4.1
The numbers of matrices in which the estimated condition number of the scaled matrix is larger

than (the first half of the table) and smaller than (the second half) the condition number (estimated)
of the original matrix by differing amounts, for the unsymmetric, symmetric, and SPD matrices in
the data set.

Unsymmetric (64) Symmetric (103) SPD (46)

ratio SK-inf B A-inf A-1 A-2 B A-inf A-1 A-2
√
d B A-inf A-1 A-2

≥1.0e+3 0 0 0 3 0 0 0 0 0 21 0 0 0 0
≥1.0e+2 0 0 0 3 1 1 0 1 0 25 0 0 0 0
≥1.0e+1 1 1 0 6 4 12 1 2 2 32 1 0 0 0
>1.0e+0 10 9 6 12 10 30 24 18 19 40 9 6 8 10
≤1.0e-3 11 11 10 11 10 18 20 25 27 0 10 10 11 10
≤1.0e-4 6 6 8 8 8 11 13 19 23 0 7 7 7 7
≤1.0e-5 5 5 6 5 4 8 8 11 14 0 3 3 3 3
≤1.0e-6 5 5 4 3 4 5 5 8 8 0 3 3 3 3

Table 4.2
The statistics on the numbers of iterations of Sinkhorn–Knopp algorithm in 1- and 2-norms

(SK-1 and SK-2) and the proposed algorithm in 1-, 2-, and ∞-norms (A-1, A-2, and A-∞) to reach
an error tolerance ε = 1.0e-4 with a limit of n in the number of iterations.

stat. n SK-1 SK-2 A-1 A-2 A-∞
its its/n its its/n its its/n its its/n its its/n

unsymmetric (64)
min 1000 1 0.000 47 0.015 1 0.000 6 0.000 2 0.000
max 115967 84617 1.000 84617 1.000 84617 1.000 84617 1.000 19 0.000
geomean 6888 1057 0.153 1615 0.234 776 0.113 1045 0.152 6 0.001

general symmetric (103)
min 1224 8 0.000 1 0.000 3 0.000 1 0.000 2 0.000
max 93279 11870 0.916 14443 1.000 10307 0.328 15343 1.000 19 0.011
geomean 12096 310 0.026 646 0.053 52 0.004 67 0.006 7 0.001

SPD (46)
min 1083 73 0.001 46 0.002 7 0.000 3 0.000 2 0.000
max 102158 8205 1.000 10795 1.000 17 0.013 18 0.012 17 0.008
geomean 10349 471 0.046 920 0.089 13 0.001 10 0.001 4 0.000

(except rdiag) improve the condition number in most of the instances (below the
row corresponding to 1.0e+0). In fact, rdiag increases the condition number of most
matrices in our data.

As seen from these numbers, using the proposed algorithm in 1- and 2-norms for
unsymmetric matrices can cause ill-conditioning (problem ids at the UFL collection
are 287, 289, 816, 1200, and 1433). In matrices which are close to being decomposable,
scaling algorithms “want” to zero out certain elements. This cannot be done exactly
and the resultant lop-sided scalings cause the condition number to go through the roof
(up by a factor of 1034 in extremis). We do not advocate scaling as a panacea but,
particularly in the symmetric case (when, if there is a full diagonal, we can expect
Sinkhorn–Knopp type algorithms to rapidly converge) the scaling is valuable. And
note that the negative phenomenon of wildly worse conditioning is not present in ∞-
norm scalings for unsymmetric matrices as the pressure to remove entries disappears.

We present some statistical indicators (the minimum, the maximum, and the
geometric mean) of the number of iterations with the same setting as before for the
proposed algorithm in 1-, 2-, and ∞-norms and Sinkhorn–Knopp algorithm in 1- and
2-norms in Table 4.2. In this table, n is the size of the matrices, “its” is the number of
iterations, and “its/n” is the ratio of these two quantities. For the latter column, we
computed the ratio for each matrix and then take the minimum, the maximum, and
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the geometric mean. As seen from the numbers, the proposed algorithm in ∞-norm
converges rapidly, displaying a geometric mean of iterations below 10. The 1-norm and
2-norm scaling algorithms have large number of iterations (see geometric means) for
unsymmetric matrices. Those numbers for the Sinkhorn–Knopp algorithm are even
larger. The 2-norm variant of both algorithms have larger geometric means, and hence
slower convergence than their 1-norm variants. For the symmetric and symmetric
positive definite matrices, the number of iterations of the proposed algorithm in the
1- and 2-norms are better than the Sinkhorn–Knopp variants.

4.2. Uses of the methods in a direct solver. We investigate the use of the
proposed scaling algorithm in the solution of linear systems with direct methods. We
do not perform experiments with SPD matrices. We use the solver MUMPS [?, ?]
version 4.10 in our tests with its default parameter settings except for the following.
For the unsymmetric matrices, if there are zeros in the diagonal, we find a maximum
traversal using dmperm of Matlab and permute the matrix to put that transversal into
the diagonal before calling MUMPS and set the related parameter ICNTL(6) to 0
in MUMPS. For the general symmetric matrices, we set the parameter ICNTL(12)
to 2 to use the compressed ordering strategies [?] along with a columnwise permu-
tation option ICNTL(6)=1, equivalent in essence to dmperm of Matlab. Before the
numerical factorization, MUMPS allocates some memory with amount equal to the
estimated one plus X% more where X is specified by the memory relaxation parame-
ter ICNTL(14). MUMPS returns an error message if the actual memory requirements
that arise during numerical factorization pass the allocated one. Extra allocation of
memory is necessary when pivoting is used to ensure numerical stability. A scaling
strategy is deemed to be better if it increases the number of successful runs (by re-
ducing pivoting and hence its effects on memory and work). No other warnings or
error messages were emitted by MUMPS for the matrices in the data set.

As the number of iterations of the proposed algorithm can be high (see Table 4.2),
we recommend its use with a fixed and moderate number of iterations rather than to
full convergence. In order to suggest a solid scaling approach, we have investigated
different strategies specified below by three integers [i1, i2, i3]. Each strategy proceeds
in three phases: i1 steps of ∞-norm scaling; then i2 steps of 1- or 2-norm scaling;
and finally i3 steps of ∞-norm scaling. It is understood that each phase continues
using the scaling factors found so far, and if convergence occurs within a phase then
the next phase is started. We use the ∞-norm scaling in the first and third phase
as a smoother to reduce each nonzero entry below one. The 1- and 2-norm scaling
iterations are two lead to different scaled matrices therefore we do not use one after
another. The results are presented in Table 4.3. In this table, the scaling strategies

are represented as [i1, i
(1)
2 , i3] or [i1, i

(2)
2 , i3] where i

(1)
2 and i

(2)
2 designate the number

of 1-norm or 2-norm iterations performed in phase 2 of the scaling strategy. We also
include results with Bunch’s algorithm, Sinkhorn–Knopp algorithm with ∞-norm
(very close to that of Bunch’s), and Sinkhorn–Knopp algorithm with 10 iterations of
1-norm scaling. We give results with different levels of memory relaxation parameter.
We note that MUMPS can run to completion for all matrices in our data set with
with one of the scaling strategies with ICNTL(14)= 40. Therefore any error message
returned by MUMPS signifies numerical difficulties.

We comment more on symmetric matrices, as the proposed algorithm is partic-
ularly motivated for this case. As seen in the right half of Table 4.3, the proposed
algorithm requires only a few iterations to reduce the number of unsuccessful runs
from 18 (with ICNTL(14)=10) and 9 (with ICNTL(14)=80). In general, increasing
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Table 4.3
The effects of different scaling strategies on the direct solver MUMPS version 4.10. A strategy

is said to be unsuccessful (usuc.), if MUMPS returns an error message with the settings described
in the text, where usuc(X) gives the number of erroneous cases with ICNTL(14)=X. The geometric
mean of the ratio of the condition number estimate of the scaled matrix to the original one is given

in the column
cnd(DAE)
cnd(A)

.

unsymmetric matrices general symmetric matrices

strategy usuc.(10) usuc.(80) cnd(DAE)
cnd(A) usuc.(10) usuc.(80) cnd(DAE)

cnd(A)

no-scaling 4 2 9.99e-01 18 9 1.00e+00
[1, 0, 0] 3 1 6.15e-02 11 6 1.25e-01
[3, 0, 0] 3 1 4.53e-02 9 3 4.31e-02
[10, 0, 0] 3 1 4.56e-02 9 2 4.00e-02

[0, 3(1), 0] 2 0 3.05e-02 4 0 1.48e-02
[1, 3(1), 0] 2 0 3.13e-02 4 0 1.39e-02
[1, 3(1), 1] 2 0 3.25e-02 4 0 1.68e-02
[1, 3(1), 3] 2 0 3.63e-02 5 0 2.08e-02

[0, 3(2), 0] 3 0 3.87e-02 7 3 2.18e-02
[1, 3(2), 0] 2 0 3.57e-02 7 3 1.97e-02
[1, 3(2), 1] 2 0 3.90e-02 7 2 2.27e-02
[1, 3(2), 3] 2 0 3.93e-02 9 2 2.61e-02

[0, 10(1), 0] 2 0 3.12e-02 3 0 1.71e-02
[1, 10(1), 0] 2 0 3.11e-02 3 0 1.69e-02
[1, 10(1), 1] 2 0 3.33e-02 3 0 1.88e-02

[0, 10(2), 0] 3 0 3.54e-02 5 1 1.57e-02
[1, 10(2), 0] 3 0 3.31e-02 4 1 1.63e-02
[1, 10(2), 1] 3 0 3.43e-02 4 1 1.74e-02

[1, 100(1), 0] 2 0 1.40e-03 3 0 1.08e-02
[1, 100(2), 0] 2 0 3.46e-02 3 0 1.62e-02

Bunch 5 1 4.13e-02 10 1 7.54e-02
SKInf 5 1 4.66e-02
SK10 2 1 3.39e-02

the number of iterations improves success rate. The strategies with the 1-norm itera-
tions are more effective than those with the 2-norm iterations (compare for example
the strategies with [·, 3(1), ·] and [·, 3(2), ·]). Most of the time, the condition number
estimates are better with the scaling strategies having 1-norm iterations (we note
that the Matlab’s estimator works in the 1-norm, so this may also have some effect).
Bunch’s algorithm is also very effective for symmetric matrices in reducing the un-
successful runs with ICNTL(14)=80; but not that successful with ICNTL(14)=10.
For the unsymmetric matrices, the strategies with the 1-norm iterations are better
than those with the 2-norm iterations in reducing the condition estimates and also
marginally better in reducing the unsuccessful runs. Bunch’s and SK∞ algorithm
fail for almost the same number of matrices as with no-scaling (even one more with
ICNTL(14)=10). We conclude that the scaling algorithms (proposed and existing
ones) are useful in reducing the need for pivoting so that memory requirements (and
work) during numerical factorization are kept close to a priori estimates. In particular,
strategies [0, 3(1), 0] or [1, 3(1), 0] are viable for symmetric and unsymmetric matrices,
both in sequential and parallel computing environments. Equivalent SK iterations
are also viable for unsymmetric matrices. For symmetric matrices, Bunch’s algorithm
has merits in sequential computing environments with relatively loose memory limits
for the direct solver, but would be harder to parallelize.
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5. Conclusion. We presented an iterative algorithm which scales the ∞-norm
of the rows and columns of a matrix to 1. The important features of the proposed
algorithm are the following: it preserves symmetry; it is permutation independent;
and it has fast linear convergence with an asymptotic rate of 1/2. We discussed the
extension to the 1-norm in detail. Again, the algorithm preserves symmetry and is
permutation independent. From the various theorems collecting the convergence anal-
ysis results in the different norms, it can be seen that the assumptions are much more
restrictive and complicated in their combinatorial aspects in the 1-norm as opposed
to the ∞-norm. In the 1-norm, we have established that convergence depends on the
nonzero structure of the matrix in much the same way as other Diagonal Product
Increasing algorithms, such as Sinkhorn–Knopp; but that for symmetric matrices our
algorithm can accelerate this convergence. This is confirmed in experimental results.

The rates of convergence in the particular case of our algorithm, fixed and fast
in the ∞-norm, problem-dependent and potentially much slower in the 1-norm, also
illustrate the strong difference between the two. But whatever norm we choose, we
have numerical evidence for the algorithm’s potential to reduce the condition number
of a matrix. Our numerical experiments demonstrate that the proposed algorithm
can be helpful for a direct solver in the sense that it reduces the need for numerical
pivoting. In particular, we have shown that one step of ∞-norm scaling followed by a
few steps of 1- or 2-norm scaling is often good enough. We have also experimentally
demonstrated that the proposed algorithm usually converges faster than Sinkhorn–
Knopp scaling method for symmetric matrices.
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The Matlab implementations of all scaling algorithms discussed in this paper and
an MPI-based parallel implementation of the proposed scaling algorithm are available
at http://perso.ens-lyon.fr/~bucar/codes.html. The MPI-based parallel ver-
sion is incorporated in MUMPS [?, ?] (since version 4.8) for scaling distributed input
matrices. The sequential Fortran implementation of the proposed scaling algorithm
is available as MC77 in the HSL Mathematical Software Library.

Appendix A. General convergence results in the 1-norm. We extend
partly the general convergence theorem of Parlett and Landis [?] regarding the con-
vergence of “Diagonal Product Increasing” (DPI) algorithms. We show that some
of their hypothesis can be weakened while keeping the same results, and that under
some stronger hypothesis, their general convergence result can be strengthened too.
Our demonstrations here follow very closely the discussions by Parlett and Landis [?,
Theorem 1, pages 63–68], and improves only partially the already very general scope
of their theoretical analysis. We have just included for completeness all the material
about our extensions, since they cover directly the specific case of our Algorithm 1
in the 1-norm. We hope that the demonstrations here might be useful to prove the
convergence of scaling alternatives.

For the notations, consider an iterative scaling algorithm producing the iter-

ates (3.2) from Section 3.2, that is A(k) =
(
a
(k)
ij

)
= D(k)AE(k), where D(k) =

diag
(
d
(k)
1 , . . . , d

(k)
n

)
and E(k) = diag

(
e
(k)
1 , . . . , e

(k)
n

)
, and where D(0) = E(0) = I. Let

r
(k)
i for i = 1, . . . , n, and c

(k)
j for j = 1, . . . , n, denote the 1-norm of rows and columns

http://perso.ens-lyon.fr/~bucar/codes.html
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respectively. Assuming A ≥ 0, the row and column sums are given as r
(k)
i =

∑n
j=1 a

(k)
ij

and c
(k)
j =

∑n
i=1 a

(k)
ij .

We first restate the theorem of Parlett and Landis [?] characterizing the conver-
gence of DPI algorithms in a slightly different form.

Theorem A.1. Suppose that a given scaling algorithm produces a sequence (3.2)
of diagonal equivalents for a nonnegative matrix A that satisfy the following properties:

(P1) the sequence (sk)k≥1 of the product of both the row and column scaling factors

sk =

n∏
i=1

d
(k)
i e

(k)
i , k = 1, 2, . . .

is monotonically increasing,
(P2) the 1-norm of rows and columns respectively converge to 1:

lim
k→∞

r
(k)
i = 1 and lim

k→∞
c
(k)
j = 1, 1 ≤ i, j ≤ n ,

Then, if A has support, Â = lim
k→∞

A(k) exists and is doubly stochastic. Additionally,

if A has total support, then this limit is diagonally equivalent to A.
The property (P1) is exactly the same as in the hypothesis of Parlett and Landis.

Property (P2) differ slightly in that it replaces and weakens partially the two other
hypothesis made by Parlett and Landis, but is sufficient, combined with (P1), to raise
the above conclusions (which are the same as in [?, Theorem 1]).

We first establish the following intermediate result.
Lemma A.2. Using the same notations as in Theorem A.1 above, property (P1),

with the added assumption that all the elements a
(k)
ij are bounded above by some con-

stant independent of k ≥ 1, as well as the fact that A has support, imply that
1. lim

k→∞
sk = ξ > 0 exists,

2. there exists a strictly positive constant γ such that

d
(k)
i e

(k)
j ≥ γ

for all k ≥ 1 and for each index pair (i, j) such that aij is strictly positive
and can be permuted into a positive diagonal.

Proof. Since A has support, there exists a permutation σ such that ai,σ(i) > 0,
1 ≤ i ≤ n. Let a = min

1≤i≤n
(ai,σ(i)). Then, for all k ≥ 1,

n∑
i=1

d
(k)
i e

(k)
σ(i)a ≤

n∑
i=1

d
(k)
i e

(k)
σ(i)ai,σ(i) =

n∑
i=1

a
(k)
i,σ(i) ≤ β ,

for some constant β > 0 (the last inequality resulting from the fact that all the
elements are bounded above). Then, by the arithmetic-geometric mean inequality,

∀k ≥ 1, sk =

n∏
i=1

(
d
(k)
i e

(k)
σ(i)

)
≤

(
1

n

n∑
i=1

d
(k)
i e

(k)
σ(i)

)n
≤
(
β

n a

)n
,

and, combined with (P1), the monotonically increasing sequence (sk)k≥1 is thus
bounded. Consequently,

lim
k→∞

sk = ξ > 0
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exists and is finite.
The demonstration of the second point goes around the same ideas. For any

aij > 0 that can be permuted into a positive diagonal, there exists a permutation σ
such that j = σ(i) and al,σ(l) > 0, for 1 ≤ l ≤ n. Then, by (P1):

∀k ≥ 1, d
(k)
i e

(k)
j

n∏
`=1, 6̀=i

(
d
(k)
` e

(k)
σ(`)

)
= sk ≥ s1 ,

and

∀k ≥ 1, d
(k)
i e

(k)
j ≥ s1

n∏
`=1, 6̀=i

(
d
(k)
` e

(k)
σ(`)

)−1
.

Let a = min
1≤i,j≤n

(aij > 0). Then, for all k ≥ 1,

n∑
`=1, 6̀=i

d
(k)
` e

(k)
σ(`)a ≤

n∑
`=1, 6̀=i

d
(k)
` e

(k)
σ(`)a`,σ(`) =

n∑
`=1, 6̀=i

a
(k)
`,σ(`) ≤ β ,

and, by the arithmetic-geometric mean inequality, we can conclude that

∀k ≥ 1, d
(k)
i e

(k)
j ≥ s1

(
(n−1)a
β

)n−1
= γ > 0 .

We are now ready to prove Theorem A.1.
Proof. [Theorem A.1] As a direct consequence from (P2), the sequence of matrices

(A(k))k≥1 is bounded in the finite dimensional space of real, n×n matrices. Consider
any convergent subsequence (A(q))q of (A(k))k≥1, and define

Â = (âij) = lim
q→∞

A(q) .

From (P2),

lim
q→∞

r
(q)
i = 1 and lim

q→∞
c
(q)
j = 1, 1 ≤ i, j ≤ n ,

which implies that Â is doubly stochastic. Then, since the set of n × n doubly
stochastic matrices is the convex hull of the set of n × n permutation matrices (see

[?]), Â must thus have total support. Therefore, âij = limq→∞ a
(q)
ij = 0 whenever

aij > 0 cannot be permuted onto a positive diagonal. Consider any entry aij > 0 in
A that can be permuted onto a positive diagonal, and let

µij =
âij
aij

= lim
q→∞

d
(q)
i e

(q)
j .

From point 2 in Lemma A.2, we know that µij ≥ γ > 0.
Then, applying Lemma 2 of [?] (which is itself paraphrased from [?, page 345]),

we know that there exist positive sequences (x
(q)
i )q and (y

(q)
i )q both with positive

limits such that

d
(q)
i e

(q)
j = x

(q)
i y

(q)
j , for all âij > 0 in Â, and for all q ≥ 1 .

Then, taking

X(q) = diag
(
x
(q)
1 , . . . , x(q)n

)
,

Y(q) = diag
(
y
(q)
1 , . . . , y

(q)
n

)
,

X = limq→∞X(q) and Y = limq→∞Y(q) ,
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we have

Â = lim
q→∞

D(q)SE(q) = lim
q→∞

X(q)SY(q) = XSY ,

showing that Â is diagonally equivalent to S, where S is the submatrix with total
support extracted from A where all entries aij > 0 in A that cannot be permuted
into a positive diagonal have been set to zero, the others remaining the same. Finally,
if we consider any other convergent subsequence in (A(k))k≥1, for the same reasons
as above its limit will also be doubly stochastic and diagonally equivalent to S. Since
doubly stochastic equivalents are unique (see [?]), the two limits must be the same.
Therefore, we can conclude that limk→∞A(k) exists and is doubly stochastic. If,
additionally A has total support, then A = S and is directly diagonally equivalent to
the doubly stochastic matrix Â, which completes the proof of Theorem A.1.

The previous two properties (P1) and (P2) are insufficient to prove that the
two sequences of scaling matrices D(k) and E(k) actually converge. The reason why
this additional result holds for the proposed Algorithm 1 is that, not only is the

sequence (sk)k≥1 monotonically increasing, but also both sequences (
∏n
i=1 d

(k)
i )k≥1

and (
∏n
i=1 e

(k)
i )k≥1 are independently monotonically increasing. We now extend the

conclusions in Theorem A.1 by incorporating this property (denoted by (P1∗) in
Section 3.2 and repeated below). Note that (P1∗) implies property (P1).

Theorem A.3. Suppose that a given scaling algorithm produces a sequence (3.2)
of diagonal equivalents for a nonnegative matrix A, each satisfying the following prop-
erties:

(P1∗) the two products of row and column scaling factors

n∏
i=1

d
(k)
i and

n∏
i=1

e
(k)
i , k = 1, 2, . . .

are monotonically increasing
(P2) being the same as in Theorem A.1 above.

Then, if A is fully indecomposable, both limits D = lim
k→∞

D(k) and E = lim
k→∞

E(k) do

exist and Â = DAE is doubly stochastic.
Proof. Since (P1∗) implies (P1), and since (P2) remains the same, we know from

Theorem A.1 that if A has total support, Â = limk→∞A(k) exists and is diagonally
equivalent to A. To prove that both D = limk→∞D(k) and E = limk→∞E(k) exist
and Â = DAE, we exploit the assumption that A is fully indecomposable. In this
case, A is diagonally equivalent to the doubly stochastic limit Â = limk→∞A(k), and
the diagonal matrices which take place in this equivalence are unique up to a scalar
factor [?].

Let us suppose now that one of the sequences (d
(k)
i )k≥1 is unbounded for some i.

In such a case, there exist a subsequence (d
(q)
i )q such that

lim
q→∞

d
(q)
i = +∞ .

As the matrix A is fully indecomposable, for any index j, 1 ≤ j ≤ n, there exist a
chain of positive entries in which the row and column indexes alternately change

aij1 , ai1j1 , ai1j2 , ai2j2 , ai2j3 , . . . , aip−1jp−1
, aip−1jp , aipjp , aipj
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“connecting” row i to column j (see, for example, [?, Theorem 4.2.7]). Consequently,
because of the conclusions raised at point 2 in Lemma A.2, we know that the denom-
inator in the following fraction

d
(k)
i e

(k)
j1
d
(k)
i1
e
(k)
j2
d
(k)
i2
e
(k)
j3

. . . d
(k)
ip−2

e
(k)
jp−1

d
(k)
ip−1

e
(k)
jp
d
(k)
ip
e
(k)
j

d
(k)
i1
e
(k)
j1
d
(k)
i2
e
(k)
j2

. . . d
(k)
ip−1

e
(k)
jp−1

d
(k)
ip
e
(k)
jp

= d
(k)
i e

(k)
j

is bounded away from zero and. From the demonstration of Theorem A.1 above this
fraction has a strictly positive limit

lim
k→∞

d
(k)
i e

(k)
j =

µij1 µi1j2 µi2j3 . . . µip−2jp−1
µip−1jp µipj

µi1j1 µi2j2 . . . µip−1jp−1
µipjp

= µij > 0 .

Since this can be done for any j, we can conclude that the subsequence (
∏n
j=1 e

(q)
j )q

(which is strictly positive) goes to zero as (d
(q)
i )−n

∏n
j=1 µij . This last conclusion is in

contradiction with property (P1∗) above, stating that both sequences (
∏n
j=1 d

(k)
j )k≥1

and (
∏n
j=1 e

(k)
j )k≥1 are monotonically increasing. The same could be done with one of

the (e
(k)
j )k≥1 instead, and we can finally conclude that each of the sequences (d

(k)
i )k≥1

and (e
(k)
i )k≥1 are bounded.

Now, since the two sequences (D(k))k≥1 and (E(k))k≥1 are bounded in the finite
dimensional space of real n×n diagonal matrices, they have convergent subsequences.
Let us consider two convergent subsequences:(

D(p),E(p)
)
−→
p→+∞

(D1,E1) and
(
D(q),E(q)

)
−→
q→+∞

(D2,E2) .

Obviously, D1AE1 = Â = D2AE2, and thus, because of the uniqueness (shown in
[?]), there exists α > 0 such that D1 = αD2 and E1 = (1/α)E2. Then, as mentioned

above, since both sequences
(∏n

i=1 d
(k)
i

)
k≥1

and
(∏n

i=1 e
(k)
i

)
k≥1

are monotonically

increasing, it is clear that α must be equal to 1 and the two limits must be equal.
Therefore, we can conclude that D = limk→∞D(k) and E = limk→∞E(k) exist, which
completes the proof.

The matrices with total support can be permuted into a direct sum of fully inde-
composable matrices [?, Theorem 1]. Now, if the algorithm generates iterates (3.2)
that are insensitive to permutations of A, and if applying it to a block diagonal matrix
is equivalent to working directly which each diagonal block separately, we can easily
extend the conclusions of Theorem A.3 to the case of matrices with total support by
collecting the conclusions from Theorem A.3 independently on each fully indecom-
posable sub-matrix in such a direct sum. This is presented as the following corollary.

Corollary A.4. Suppose that a given scaling algorithm produces a sequence of
diagonal equivalents, as in (3.2), for a nonnegative matrix A that satisfy the three
properties (P1∗) and (P2), given in Theorem A.3 above, and if additionally

1. the algorithm is permutation insensitive, in the sense that, under any row or
column permutation of the original matrix A, the scaling elements remain the
same and are just permuted along the diagonals of D(k) and E(k) with respect
to the corresponding row or column permutations applied to A,

2. the iterates also remain the same when applying the algorithm to a block
diagonal matrix as when collecting results obtained by applying the algorithm
on each diagonal submatrix separately,
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then, if A has total support, both limits D = limk→∞D(k) and E = limk→∞E(k) do
exist and Â = DAE is doubly stochastic.

The two extra hypothesis of Corollary A.4 are naturally satisfied by algorithms
that generate iterates by relying only on the computation of the one norm of both rows
and columns at each iteration (as is the case in the proposed and Sinkhorn-Knopp
algorithms). We recall that Parlett and Landis use the fact that their algorithm
incorporates a normalization step, with

µk =
1

n

n∑
i=1

r
(k+1)
i = 1 ,

enforcing the mean of all row sums to be set to 1 at each iteration. This was actually
incorporated as property (P3) in the hypothesis of their main convergence theorem.
As we have seen above, this is not mandatory to reach the same conclusions as in
Theorem A.1. Additionally, this normalization step may however violate the second
hypothesis in Corollary A.4, because the averaging of row sums may not be the same
when computed globally or block-wise in the case of a block-diagonal matrix. This
may not prevent anyway the algorithms proposed in [?] (they incorporate this nor-
malization step) to produce still a convergent sequence of scaling factors. We have
not found how to characterize in a simple way some common generic properties, that
might enable to reach the same conclusions in the case of matrices with total support
only, and extend the scope of Corollary A.4 to address these particular “normalized”
scaling algorithms.


