Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Human resting eHsp72 concentration decreases during the initial adaptation to exercise in a hot humid environment

Marshall, H.C. and Ferguson, R.A. and Nimmo, M.A. (2006) Human resting eHsp72 concentration decreases during the initial adaptation to exercise in a hot humid environment. Cell Stress and Chaperones, 11 (2). pp. 129-134. ISSN 1355-8145

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Heat shock protein (Hsp) 72 is a cytosolic protein that also is present in the circulation. Extracellular Hsp72 (eHsp72) is inducible by exercise and is suggested to act as a danger signal to the immune system. The adaptive response of eHsp72 to repeated exercise-heat exposures in humans remains to be determined. An intracellular animal study found a reduced Hsp72 response, with no change in resting levels, during heat stress after a single day of passive heat acclimation. The current study therefore tested whether adaptations in human eHsp72 levels would similarly occur 24 hours after a single exercise-heat exposure. Seven males completed cycle exercise (42.5% O2peak for 2 hours) in a hot, humid environment (38°C, 60% relative humidity) on each of 2 consecutive days. Blood samples were obtained from an antecubital vein before exercise and 0 hours and 22 hours postexercise for the analysis of eHsp72. Exercise-heat stress resulted in enhanced eHsp72, with a similar absolute increase found on both days (day 1: 1.26 ng/mL [0.80 ng/mL]; day 2: 1.29 ng/mL [1.60 ng/mL]). Resting eHsp72 decreased from rest on day 1 to day 2's 22-hour postexercise sample (P < 0.05). It is suggested that the reduction in resting eHsp72 after 2 consecutive exercise-heat exposures is possibly due to an enhanced removal from the circulation, for either immunoregulatory functions, or for improved cellular stress tolerance in this initial, most stressful period of acclimation.