Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

On tail behaviour of nonlinear autoregressive functional conditional heteroscedastic model with heavy-tailed innovations

Pan, J. and Wu, G. (2005) On tail behaviour of nonlinear autoregressive functional conditional heteroscedastic model with heavy-tailed innovations. Science in China Series A: Mathematics, 48 (9). pp. 1169-1181. ISSN 1006-9283

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We study the tail probability of the stationary distribution of nonparametric nonlinear autoregressive functional conditional heteroscedastic (NARFCH) model with heavy-tailed innovations. Our result shows that the tail of the stationary marginal distribution of an NARFCH series is heavily dependent on its conditional variance. When the innovations are heavy-tailed, the tail of the stationary marginal distribution of the series will become heavier or thinner than that of its innovations. We give some specific formulas to show how the increment or decrement of tail heaviness depends on the assumption on the conditional variance function. Some examples are given.