Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Prognostic modeling for electrical treeing in solid insulation using pulse sequence analysis

Nur Hakimah Binti Ab Aziz, N and Catterson, Victoria and Judd, Martin and Rowland, S.M. and Bahadoorsingh, S. (2014) Prognostic modeling for electrical treeing in solid insulation using pulse sequence analysis. In: 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena, 2014-10-19 - 2014-10-22.

[img]
Preview
PDF (Aziz-etal-CEIDP2014-prognostic-modeling-for-electrical-treeing)
Aziz_etal_CEIDP2014_prognostic_modeling_for_electrical_treeing.pdf - Accepted Author Manuscript

Download (2MB) | Preview

Abstract

This paper presents a prognostic framework for estimating the time-to-failure (TTF) of insulation samples under electrical treeing stress. The degradation data is taken from electrical treeing experiments on 25 epoxy resin samples. Breakdown occurs in all tests within 2.5 hours. Partial discharge (PD) data from 18 samples are used as training data for prognostic modeling and 7 for model validation. The degradation parameter used in this model is the voltage difference between consecutive PD pulses, which decreases prior to breakdown. Every training sample shows a decreasing exponential trend when plotting the root mean squared (RMS) of the voltage difference for 5 minute batches of data. An average model from the training data is developed to determine the RMS voltage difference during breakdown. This breakdown indicator is verified over three time horizons of 25, 50 and 75 minutes. Results show the best estimation of TTF for 50 minutes of data, with error within quantified bounds. This suggests the framework is a promising approach to estimating insulation TTF.