Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Weighted least absolute deviations estimation for ARMA models with infinite variance

Pan, Jiazhu and Wang, Hui and Yao, Qiwei (2007) Weighted least absolute deviations estimation for ARMA models with infinite variance. Econometric Theory, 23 (5). pp. 852-879. ISSN 0266-4666

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

For autoregressive moving average (ARMA) models with infinite variance innovations, quasi-likelihood-based estimators (such as Whittle estimators) suffer from complex asymptotic distributions depending on unknown tail indices. This makes statistical inference for such models difficult. In contrast, the least absolute deviations estimators (LADE) are more appealing in dealing with heavy tailed processes. In this paper, we propose a weighted least absolute deviations estimator (WLADE) for ARMA models. We show that the proposed WLADE is asymptotically normal, is unbiased, and has the standard root-n convergence rate even when the variance of innovations is infinity. This paves the way for statistical inference based on asymptotic normality for heavy-tailed ARMA processes. For relatively small samples numerical results illustrate that the WLADE with appropriate weight is more accurate than the Whittle estimator, the quasi-maximum-likelihood estimator (QMLE), and the Gauss-Newton estimator when the innovation variance is infinite and that the efficiency loss due to the use of weights in estimation is not substantial.