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1 Introduction

Since the seminal papers by Engle (1982) and Bollerslev (1986), generalized autoregressive

conditional heteroscedastic (GARCH) models have been proved particularly valuable in mod-

elling time varying volatility. Earlier literature on inference of GARCH models is based on

least-squares estimation (LSE) and maximum likelihood estimation (MLE) under the assump-

tion that the distribution of innovations is standard Gaussian distribution, see Engle (1982) and

Bollerslev (1986). Then the Gaussian quasi-maximum likelihood estimation (G-QMLE) became

popular due to its simplicity. Regarding to the asymptotic inference of G-QMLE for stationary

GARCH models, the consistency and asymptotic normality have been established under differ-

ent conditions, see Lee and Hansen (1994), Lumsdaine (1996), Berkes et al. (2003), Hall and

Yao (2003), and Francq and Zaköıan (2004).

Although G-QMLE behaves appropriately in financial applications, empirical studies have

shown that when using normal innovations, the tails of the fitted GARCH(1, 1) models seem
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to be much thinner than the tails apparent in the data, see for instance Mikosch and Stărică

(2000). In fact, G-QMLE does not perform successfully in cases where the error distribution of

GARCH-type models is either skewed or leptokutic. In the literature, there are two approaches

correcting the defect of G-QMLE: the use of mixture type models and estimating the models

based on more general quasi likelihood distributions which can capture the skewness or heavy-

tail of the errors. The first approach was employed in Vlaar and Palm (1993), Haas et al. (2004),

Zhang et al. (2006) etc.. The second approach was used for instance in Bollerslev (1987), who

considered Student’s t-GARCH models; Berks and Horváth (2004), who proposed a class of

QMLE for stationary GARCH models; Lee and Lee (2009), who proposed the normal mixture

QMLE (NM-QMLE) which is obtained from the normal mixture quasi-likelihood (see Ha and

Lee (2011) for the ARMA-GARCH model). Since the mixture type models are not GARCH

models by definition, we focus on the second approch.

Nonstationarity in the volatility process has been well documented for macroeconomic and

financial time series data, see Loretan and Phillips (1994) and Hwang et al. (2010). When it

occurs, the prevalent stationary and conditional approaches such as GARCH-type or stochastic

volatility (SV) models are inadequate and may lead to model mis-specification or poor volatility

forecasts, see Stărică et al. (2005). Jensen and Rahbek (2004 a, 2004 b) are the first to consider

the asymptotic theory of G-QMLE for non-stationary ARCH/GARCH(1,1) models. For further

studies of estimation for non-stationary GARCH type models, see Linton et al. (2010), Francq

and Zaköıan (2012) and Francq and Zaköıan (2013). On the other hand, standard GARCH

models assume that positive and negative error terms have a symmetric effect on the volatil-

ity. In practice this assumption is frequently violated, in particular by stock returns, in that

the volatility increases more after bad news than after good news. Among the asymmetric

GARCH models, threshold GARCH (TGARCH) model is one of the most popular models in

the literature, see Glosten et. al (1993) and Li and Li (1996) among others. Note that nonsta-

tionary TGARCH models capture the non-stationarity and asymmetry of the volatility of time

series data simultaneously. This motivates us to study the estimation problem of nonstationary

TGARCH models when the errors are skewed or leptokutic.

In this paper, adopting the ideas of Lee and Lee (2009) we propose NM-QMLE for non-

stationry TGARCH(1, 1) model and demonstrate the validity of NM-QMLE by verifying its

consistency. The rest of this paper is organized as follows. Section 2 presents the estimation

methodology and main results. In section 3, we provide the proof of the theorems presented in
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section 2.

Throughout this paper, ∥x∥ denotes the norm
√
x21 + · · ·+ x2m for a m-dimensional vector

x = (x1, · · · , xm)′, and ∥X∥p = [E(|X|p)]1/p is the Lp norm for a random variable X.

2 Methodology and main results

Let us consider the TGARCH(1, 1) model defined by

Xt = σtεt and σ2t = ω + α+(X
+
t−1)

2 + α−(X
−
t−1)

2 + βσ2t−1, (2.1)

with intial values X0 and σ0 ≥ 0, where ω > 0, α+ ≥ 0, α− ≥ 0, β ≥ 0 and using the

notation x+ = max (x, 0), x− = max (−x, 0). In this model, {εt} is a sequence of independent

and identically distributed (iid) random variables with Eεt = 0 and Eε2t = 1, such that εt is

independent of {Xt−k, k ≥ 1} for all t. According to Pan et al. (2008), there exists a unique

strictly stationary and ergodic solution to model (2.1) if and only if

E log
[
α+(ε

+
t−1)

2 + α−(ε
−
t−1)

2 + β
]
< 0.

The parameter of model (2.1) is then ϕ = (α+, α−, β, ω)
′ with true value ϕ0 = (α0+, α0−, β0, ω0)

′.

Let φ = (α+, α−, β)
′ with the true value φ0 = (α0+, α0−, β0)

′. We wish to estimate φ0 from

observations {Xt, t = 1, · · · , n} in the non-stationary case.

In order to obtain the NM-QMLE for model (2.1), a family of normal mixture densities is

introduced first. The normal mixture (NM) density with s components is of the form

gϑ(y) =

s∑
k=1

pkf(y;µk, ϱk), (2.2)

where ϑ = (p1, · · · , ps−1, µ1, · · · , µs−1, ϱ1, · · · , ϱs−1)
′ and

f(y;µk, ϱk) =
1√
2πϱk

exp
{
− (y − µk)

2

2ϱ2k

}
satisfying

s∑
k=1

pk = 1,

s∑
k=1

pkµk = 0 and

s∑
k=1

pk(µ
2
k + ϱ2k) = 1. (2.3)

In general, the s component normal mixture distribution is not identifiable, so we need the

following identification condition as in Lee and Lee (2009). Denote Θ̃ the set of all ϑ satisfying
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(2.3) and G =
{
gϑ : ϑ ∈ Θ̃

}
. We assume G is identifiable, that is, for any gϑ1 ∈ G and gϑ2 ∈ G

with ϑi = (p
(i)
1 , · · · , p(i)s−1, µ

(i)
1 , · · · , µ(i)s−1, ϱ

(i)
1 , · · · , ϱ(i)s−1)

′,

gϑ1 ≡ gϑ2 a.e.⇐⇒
s∑

k=1

p
(1)
k δ

(µ
(1)
k ,ϱ

(1)
k )

=

s∑
k=1

p
(2)
k δ

(µ
(2)
k ,ϱ

(2)
k )
, (2.4)

where δ(µk,ϱk)(·) is an indicator function with δ
(µ

(i)
k ,ϱ

(i)
k )

(µ
(i)
k , ϱ

(i)
k ) = 1 and δ

(µ
(i)
k ,ϱ

(i)
k )

(x, y) = 0

for all (x, y) ̸= (µ
(i)
k , ϱ

(i)
k ), i = 1, 2. Furthermore, we assume G is nondegenerate, that is, any

s-component normal mixture density in G can not be represented as a mixture with the number

of components less than s.

The idea behind the NM-QMLE is that the estimator is constructed as if the innovations εt

are normal-mixture random variables. Conditionally on initial values X0, σ0, the normal mixture

quasi-likelihood is given by

Ln(ϕ, ϑ) =

n∏
t=1

{ s∑
k=1

pk
1√

2πϱ2kσ
2
t (ϕ)

exp
{
− (Xt − µkσt(ϕ))

2

2ϱ2kσ
2
t (ϕ)

}}
, (2.5)

where

σ2t (ϕ) = ω + α+(X
+
t−1)

2 + α−(X
−
t−1)

2 + βσ2t−1(ϕ). (2.6)

A natural idea is to obtain an estimator of ϕ by maximizing LNM
n (ϑ, ϕ), and nuisance parameters

ϑ are also estimated at the same time. Since the density function g of εt may be not in G, then

what does the true value ϑ0 of ϑ mean? One may hope ϑ0 can minimize the discrepancy between

the true innovation density g and the quasi likelihood normal mixture density in the sense of

Kullback-Leibler Information Distance (KLID), see White (1982). Thus, we define the true value

ϑ0 = (p10, · · · , p(s−1)0, µ10, · · · , µ(s−1)0, ϱ10, · · · , ϱ(s−1)0)
′ as follows,

ϑ0 =
{
ϑ ∈ Θ̃ : d(g, gϑ0) = min

ϑ∈Θ̃
d(g, gϑ)

}
, (2.7)

where d(g, gϑ) =
∫
g(x)

(
log g(x) − log gϑ(x)

)
dx is the KLID between g and gϑ. Note that ϑ0

here only depends on the KLID of the two densities under consideration. Let Θ be a compact

subset of (0,∞)4 × Θ̃. We also set θ = (ϕ′, ϑ′)′ which belongs to the parameter space Θ. Now

we define the NM-QMLE of the parameter θ0 = (ϕ′0, ϑ
′
0)

′ by

θ̂n = (ω̂n, φ̂n, ϑ̂n)
′ = argmax

θ∈Θ
Ln(ϕ, ϑ) = argmin

θ∈Θ
ln(θ) (2.8)

where

ln(θ) = −n−1 logLn(ϕ, ϑ) = n−1
n∑

t=1

Wt(θ) and Wt(θ) = − log

{
1

σt(ϕ)
gϑ

( Xt

σt(ϕ)

)}
(2.9)
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and Ln(ϕ, ϑ) is defined in (2.5). Note that normal mixture structure includes an additional

parameter ϑ, and this adds complexity to ln(θ), thereby requiring EM algorithm. For the com-

putation of NM-QMLE for non-stationary TGARCH(1, 1) models, one may adopt the algorithm

in Hwang et al.(2010).

Write ψ = (φ′, ϑ′)′ and let ψ̂n = (φ̂′
n, ϑ̂

′
n)

′. In order to obtain asymptotic properties of ψ̂n,

we need the following regularity conditions:

A1. γ0 = E log
[
α0+(ε

+
t−1)

2 + α0−(ε
−
t−1)

2 + β0
]
≥ 0;

A2. P (εt = 0) = 0. Furthermore, the support of εt contains at least 3 points and is

not concentrated on the positive or the negative line.

A3. The functional ϑ0 ∈ Θ̃ is essentially unique.

Given below are the asymptotic properties for ψ̂n and ω̂n. The proofs are given in Section 3.

Theorem 1. Suppose G is identifiable and nondegenerate. Let assumptions A1 - A3 hold. Then

the NM-QMLE defined in (2.8) satisfies the following properties

(i) When γ0 > 0, we have ψ̂n → ψ0, a.s. as n→ ∞.

(ii) When γ0 = 0, if ∀θ ∈ Θ, β <
∥∥1/(α0+(ε

+
t )

2 + α0−(ε
−
t )

2 + β0
)∥∥−1

p
for some p > 1, we

have ψ̂n → ψ0, in probability as n→ ∞.

Theorem 2. Suppose G is identifiable and nondegenerate, and assumptions A1 - A3 hold.

Assume εt has continuous distribution, and Θ contains two arbitraily close points θ1 = (ω1, ψ1)
′

and θ2 = (ω2, ψ1)
′ such that E log

[
α1+(ε

+
t−1)

2+α1−(ε
−
t−1)

2+β1
]
> 0. There exists no consitent

estimator of θ0 ∈ Θ.

Remark 1. One may suspect the existence of such a ϑ0. In fact, since the parameter space

for the family of univariate normal mixtures can be embedded in a compact set by using the

transformation method given by Beran (1977, pp. 447-448), the existence of ϑ0 is guaranteed if

d(g, gϑ) is a continuous function with respect to ϑ, which is easily verified. The uniqueness of

ϑ0 is intestable and difficult to check in general KLIC, see also Lee and Lee (2009).

Remark 2. The asymptotic normality of θ̂n is difficult to obtain since the first derivative of

the log normal mixture likelihood function can not be approximated by a martingale difference

under the constraint (2.3) to Θ̃. We leave this for further investigation.
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Remark 3. Theorem 1 and Theorem 2 can be extended to the more general non-stationary

models of Box-Cox transformed threshold GARCH(1, 1) models, which were proposed by Hwang

and Kim (2004) and Hwang and Basawa (2004), see also Pan et al.(2008). To fix ideas, we only

consider non-stationary TGARCH(1, 1) models in this paper.

3 Proofs

In this section, we provide the proofs for the Theorems prensented in section 2. To apply

the standard proof for consistency of ψ̂n, we use a strictly stationary series νt to approximate the

non-stationary σ2t (ϕ)/σ
2
t , where and in the following σ2t ≡ σ2t (ϕ0). Define the following process

νt(φ) =
∞∑
j=1

ηt−j(φ)
e0,t−j

j−1∏
k=1

β
e0,t−k

(3.1)

with the convention
∏j−1

k=1 = 1 when j ≤ 1 and

ηt(φ) = α+(ε
+
t )

2 + α−(ε
−
t )

2, e0,t = α0+(ε
+
t )

2 + α0−(ε
−
t )

2 + β0.

Let Θ0 = {θ ∈ Θ : β < eγ0} and Φp = {θ ∈ Θ : β < ∥1/e0,1∥−1
p }.

Lemma 1. Suppose assumptions A1 and A2 hold. Denote Qn(θ) = ln(θ)− ln(θ0). We have

(i)For any compact subset Θ∗
0 of Θ0,

lim
n→∞

sup
θ∈Θ∗

0

∣∣∣Qn(θ)− E log
[
gϑ0(εt)

/(
ν
−1/2
t (φ)gϑ(ν

−1/2
t (φ)εt)

)]∣∣∣ = 0 a.s.;

(ii) For any compact subset Φ∗
p of Φp,

lim
n→∞

sup
θ∈Φ∗

p

∣∣∣Qn(θ)− E log
[
gϑ0(εt)

/(
ν
−1/2
t (φ)gϑ(ν

−1/2
t (φ)εt)

)]∣∣∣ = 0 in Lp.

Proof. (i) It is easy to verify that

Qn(θ) =
1

n

n∑
t=1

[
log

( 1

σt
gϑ0(εt)

)
− log

( 1

σt(ϕ)
gϑ
( Xt

σt(ϕ)

))]
= Q1n(ψ) +Q2n(θ),

where

Q1n(ψ) =
1

n

n∑
t=1

log
gϑ0(εt)ν

1/2
t (φ)

gϑ
(
ν
−1/2
t (φ)εt

) and Q2n(θ) =
1

n

n∑
t=1

log
σt(ϕ)gϑ

(
ν
−1/2
t (φ)εt

)
σtν

1/2
t (φ)gϑ

(
Xt/σt(φ)

) .
Thus, to prove (i), we only need to establish that

lim
n→∞

sup
θ∈Θ∗

0

∣∣∣Q1n(ψ)− E log
[
gϑ0(εt)

/(
ν
−1/2
t (φ)gϑ(ν

−1/2
t (φ)εt)

)]∣∣∣ = 0 a.s. (3.2)
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and

lim
n→∞

sup
θ∈Θ∗

0

∣∣Q2n(θ)
∣∣ = 0 a.s.. (3.3)

By Lemma 7.1 of Francq and Zaköıan (2013), νt(φ) is stationary and ergodic. Therefore, the

ergodic theorem implies that

Q1n(ψ) → E log
[
gϑ0(εt)

/(
ν
−1/2
t (φ)gϑ(ν

−1/2
t (φ)εt)

)]
a.s.. (3.4)

Noting that Θ∗
0 is compact and β < eγ0 for any θ ∈ Θ∗

0, we have for any k > 0

E sup
θ∈Θ∗

0

∣∣∣∣ 1

νt(φ)

∂νt(φ)

∂φi

∣∣∣∣k ≤ C, i = 1, 2, 3. (3.5)

By (3.5), Lemma 7.3 of Francq and Zaköıan (2013) and some straight calculations, we have

E sup
θ∈Θ∗

0

∣∣∣∣∂Q1n(ψ)

∂φi

∣∣∣∣
= E sup

θ∈Θ∗
0

∣∣∣∣ 12n
n∑

t=1

1

νt(φ)

∂νt(φ)

∂φi

[
1 +

εtν
−1/2
t (φ)

gϑ(ν
−1/2
t (φ)εt)

) ∂gϑ(x)
∂x

∣∣∣
x=ν

−1/2
t (φ)εt

]∣∣∣∣ <∞ (3.6)

for i = 1, 2, 3. Similarly, we can obtain

E sup
θ∈Θ∗

0

∣∣∣∣∂Q1n(ψ)

∂ϑi

∣∣∣∣ = E sup
θ∈Θ∗

0

∣∣∣∣− 1

n

n∑
t=1

εtν
−1/2
t (φ)

gϑ(ν
−1/2
t (φ)εt)

) ∂gϑ(ν−1/2
t (φ)εt)

∂ϑi

∣∣∣∣ <∞ (3.7)

for i = 1, · · · , 3(s− 1). For any θ1 = (ω1, ψ
′
1)

′, θ2 = (ω2, ψ
′
2)

′ ∈ Θ∗
0, by the mean value theorem,

(3.6) and (3.7) imply that

sup
θ1,θ2∈Θ∗

0

∣∣Q1n(ψ1)−Q1n(ψ2)
∣∣ ≤ sup

θ1,θ2∈Θ∗
0

∥∥∥∂Q1n(ψ∗)

∂ψ

∥∥∥∥∥ψ1 − ψ2

∥∥ = O(1) sup
θ1,θ2∈Θ∗

0

∥∥ψ1 − ψ2

∥∥
with ψ∗ between ψ1 and ψ2, which shows that Q1n(ψ) is equicontinuous. Combining this fact,

(3.4) and the compact of Θ∗
0, (3.2) hold.

Next, we deal with Q2n(θ). By Lemma 7.1 and 7.3 of Francq and Zaköıan (2013) and Lemma

A.3 of Francq and Zaköıan (2012) , we have

sup
θ∈Θ∗

0

∣∣∣∣σ2t (ϕ)σ2t
− νt(φ)

∣∣∣∣ → 0 a.s., sup
θ∈Θ∗

0

σ2t
σ2t (ϕ)

≤ Vt and E sup
θ∈Θ∗

0

[
V k
t + ν−k

t (φ)
]
<∞

for any k > 0 and Vt is a stationary and ergodic process. Hence

sup
θ∈Θ∗

0

∣∣∣∣ 1n
n∑

t=1

log
gϑ
(
ν
−1/2
t (φ)εt

)
gϑ
(
Xt/σt(φ)

) ∣∣∣∣
7



= sup
θ∈Θ∗

0

∣∣∣∣ 1n
n∑

t=1

( σt
σt(ϕ)

− ν
−1/2
t (φ)

)
εt

1

gϑ(x∗)

∂gϑ(x∗)

∂x

∣∣∣∣
x∗∈

(
min{ σt

σt(ϕ)
,ν

−1/2
t (φ)},max{ σt

σt(ϕ)
,ν

−1/2
t (φ)}

)
≤ C

n

n∑
t=1

[
ε2t sup

θ∈Θ∗
0

∣∣∣ σt
σt(ϕ)

+ ν
−1/2
t (φ)

∣∣∣+ |εt|
]
sup
θ∈Θ∗

0

∣∣∣∣ σt
σt(ϕ)

− ν
−1/2
t (φ)

∣∣∣∣
≤ C

n

n∑
t=1

[(
V

1/2
t + ν

−1/2
t (φ)

)
ε2t + |εt|

]
sup
θ∈Θ∗

0

∣∣∣∣ σt
σt(ϕ)

− ν
−1/2
t (φ)

∣∣∣∣
≤ Cε

n

n∑
t=1

[(
V

1/2
t + ν

−1/2
t (φ)

)
ε2t + |εt|

]
for any ε > 0, when n is large enough, where φ =

(
infθ∈Θ∗

0
(α+), infθ∈Θ∗

0
(α−), infθ∈Θ∗

0
(β)

)′
and

C is a constant. This implies

lim
n→∞

sup
θ∈Θ∗

0

∣∣∣∣ 1n
n∑

t=1

log
gϑ
(
ν
−1/2
t (φ)εt

)
gϑ
(
Xt/σt(φ)

) ∣∣∣∣ = 0, a.s. (3.8)

Similarly, we can show that

lim
n→∞

sup
θ∈Θ∗

0

1

n

n∑
t=1

log
σt(ϕ)

σtν
1/2
t (φ)

= 0, a.s. (3.9)

We thus obtain (3.3) due to (3.8) and (3.9). Now the proof of (i) is completed.

(ii) The proof of (ii) is identical except that the a.s. convergence in (3.2) and (3.3) are

replaced by Lp convergence.

Lemma 2. Under assumptions A1 - A3, E log
[
gϑ0(εt)/(ν

−1/2
t (φ)gϑ(ν

−1/2
t (φ)εt))

]
attains a

unique minimizer at ψ0.

Proof. By the definition of the Kullback-Leibler divergence, we have

E log
{
ugϑ(uεt)

}
< E log

{
gϑ0(εt)

}
for any ϑ(ϑ ̸= ϑ0) ∈ Θ̃ and u( ̸= 1) > 0. Thus,

E log
[
gϑ0(εt)/(ν

−1/2
t (φ)gϑ(ν

−1/2
t (φ)εt))

]
= E

{
E
{
log

[
gϑ0(εt)/(ν

−1/2
t (φ)gϑ(ν

−1/2
t (φ)εt))

]∣∣Ft−1

}}
≤ 0

with the equality only if νt(φ) = 1 and ϑ = ϑ0. By Lemma 7.2 of Francq and Zaköıan (2013),

νt(φ) = 1 a.s. iff φ = φ0 under assumptions A1 and A2. Combined with assumption A3, the

conclusion follows.
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Lemma 3. Suppose the conditions of Theorem 2 hold. Let θ1 = (ω1, ψ
′
1)

′ and θ2 = (ω2, ψ
′
1)

′ be

two different points of Θ such that Elog[α1+(ε
+
t )

2 + α1−(ε
−
t )

2 + β1] > 0. When ω1 and ω2 are

sufficiently close, there exists no consistent test for H0 : θ0 = θ1 against H1 : θ0 = θ2 at the

asymptotic level α ∈ (0, 0.5).

Proof. We follow the lines of Francq and Zaköıan (2012). From Theorem 3.2.1 of Lehmann and

Romano (2005), the most powerful test is Newman-Pearson test of rejection region C = {Sn >

cn}, where

Sn =

n∑
t=1

[
log

{
1

σt(ϕ2)
gϑ1

( Xt

σt(ϕ2)

)}
− log

{
1

σt(ϕ1)
gϑ1

( Xt

σt(ϕ1)

)}]
and cn is a positive constant corresponding to the α-quantile of the distribution of Sn under H0.

By recursion, we can obtain that σ2t (ϕ1) ≥ ω1
∏t−1

i=1

[
α1+(ε

+
i )

2 + α1−(ε
−
i )

2 + β1
]
. Noting that

σ2t (ϕ1)− σ2t (ϕ2) =
∑t

j=1 β
j−1
1 (ω1 − ω2), under H0, we have for any k > 0

E
∣∣∣σ2t (ϕ1)− σ2t (ϕ2)

σ2t (ϕ1)

∣∣∣k ≤ C
{
E
[ β1

α1+(ε
+
i )

2 + α1−(ε
−
i )

2 + β1

]k}t
= Cρt, (3.10)

where ρ = E
{
β1/

[
α1+(ε

+
i )

2 + α1−(ε
−
i )

2 + β1
]}k

< 1 due to assumption A2. By the proof of

Lemma 7.3 of Francq and Zaköıan (2013), under H0 there exists a sequence of stationary and

ergodic process Vt such that

σ2t (ϕ1)

σ2t (ϕ2)
≤ Vt and EV k

t < +∞ (3.11)

for any k > 0. Denote

S̄n =

n∑
t=1

∣∣∣∣ log{ 1

σt(ϕ2)
gϑ1

( Xt

σt(ϕ2)

)}
− log

{
1

σt(ϕ1)
gϑ1

( Xt

σt(ϕ1)

)}∣∣∣∣.
By (3.10) and (3.11), under H0, it follows that

ES̄n =

n∑
t=1

E
∣∣∣ log gϑ1

( Xt

σt(ϕ2)

)
− log gϑ1

( Xt

σt(ϕ1)

)∣∣∣+ 1

2

n∑
t=1

E
∣∣∣ log σ2t (ϕ2)− log σ2t (ϕ1)

∣∣∣
≤ C

n∑
t=1

E
∣∣∣( Xt

σt(ϕ2)
+

Xt

σt(ϕ1)
+ 1

)
εt

∣∣∣∣∣∣σt(ϕ1)− σt(ϕ2)

σt(ϕ2)

∣∣∣
+C

n∑
t=1

E
[ 1

σ2t (ϕ2)
+

1

σ2t (ϕ1)

]∣∣∣σ2t (ϕ1)− σ2t (ϕ2)
∣∣∣

≤ C

n∑
t=1

E
[
|εt|+ ε2t (1 + V

1/2
t ) + 1 + Vt

]∣∣∣σ2t (ϕ1)− σ2t (ϕ2)

σ2t (ϕ1)

∣∣∣
≤ C,
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where C is independent of n, which implies

Sn → S0 =

∞∑
t=1

log

{
σtgϑ1

( Xt

σt(ϕ2)

)/(
σt(ϕ2)gϑ1(εt)

)}
a.s. under H0.

Similarly, under H1 we can show that

Sn → S1 =

∞∑
t=1

log

{
σt(ϕ1)gϑ1(εt)

/(
σtgϑ1

( Xt

σt(ϕ1)

))}
a.s..

Using (3.10), (3.11) and similar method in the proof of ES̄n ≤ C above, we can conclude that

|S0 − S1| ≤ |ω1 − ω2|
∞∑
t=1

ρtHt (3.12)

where Ht is a stationary and ergodic process with finite expectation. Noting that the laws of S0

and S1 are continuous when ω1 ̸= ω2, the power of the Neyman -Pearson test tends to

lim
n→∞

PH1(Sn > cn) = P (S1 > c)

where c is a constant such that P (S0 > c) = α. For any ε > 0, we get

P (S1 > c) ≤ P (S0 + |S1 − S0| > c) ≤ P (S0 > c− ε) + P (|S1 − S0| > ε).

By continuity, P (S0 > c − ε) is close to α when ε is close to zero. Furthermore, due to (3.12),

P (|S1−S0| > ε) is close to zero provided |ω1−ω2| is small. Thus, P (S1 > c) < 1 when |ω1−ω2|

is small. Thus the inconsistency of the Neyman-Pearson test and any other test is proved.

Proof of Theorem 1.(i) By Lemma 7.1 of Francq and Zaköıan (2013), we have for any

θ /∈ Θ0, σ
2
t (ϕ)/σ

2
t → ∞ a.s., which implies that Qn(θ) defined in Lemma 1 converges to ∞ a.s..

Thus,

θ̂n = argmin
θ∈Θ

ln(θ) = argmin
θ∈Θ

Qn(θ) = arg min
θ∈Θ0

Qn(θ).

Combing the results of Lemma 1 and Lemma2 and the compactness of Θ, we complete the proof

by standard arguments, see for example Theorem 4.1.1 of Amemiya (1985).

(ii) The proof is identical to that of (i), except that the a.s. convergence is replaced by the

Lp convergence.

Proof of Theorem 2. If there exists a consistent estimator θ̂n, then the test of critical

region C = {∥θ̂n − θ1∥ > ∥θ̂n − θ2∥} would have null asymptotic errors of the first and second

kind, which contradicts Lemma 3.
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