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A pinned or free-floating rigid plate lying on the free surface of a thin film of viscous fluid,
which itself lies on top of a horizontal substrate that is moving to the right at a constant
speed is considered. The focus of the present work is to describe how the competing
effects of the speed of the substrate, surface tension, viscosity, and, in the case of a pinned
plate, the prescribed pressure in the reservoir of fluid at its upstream end, determine the
possible equilibrium positions of the plate, the free surface, and the flow within the film.
The present problems are of interest both in their own right as paradigms for a range of
fluid-structure interaction problems in which viscosity and surface tension both play an
important role, and as a first step towards the study of elastic effects.
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1. Introduction

Consider a rigid or elastic plate lying on the free surface of a thin film of viscous fluid,
which itself lies on top of a horizontal substrate that is moving to the right at a constant
speed. The plate can either be pinned and in contact with a reservoir of fluid at its
upstream end or be free floating, as shown in Figure 1. Since both the location of the free
surface and the position and orientation of the plate are unknown a priori, the present
problem is both a free-boundary and a fluid-structure interaction problem. The focus of
the present work is to describe how the competing effects of the speed of the substrate,
surface tension, viscosity, and, in the case of a pinned plate, the prescribed pressure in the
reservoir, determine the possible equilibrium positions of the plate, the free surface, and
the flow within the film. The present work is concerned with the case of a rigid plate, but
in Part 2 of our study we will extend our approach to study the influence of the elasticity
of the plate.

As an example of the particular challenges that arise in this type of problem even for a
rigid plate, consider the work of Moriarty & Terrill (1996), who proposed the free-floating
problem shown in Figure 1(b) as an idealised model for the motion of a hard contact lens
on the tear film of the eye after a blink. When the substrate moves at a constant speed,
the steady-state profile of the free surface exhibits decaying capillary waves upstream and
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Figure 1. Three paradigm problems involving a rigid or elastic plate lying on the free surface of
a film of viscous fluid: (a) the rigid pinned problem, (b) the rigid free-floating problem, and (c)
the elastic free-floating problem. Problems (a) and (b) are studied in the present work.

a monotonically decaying profile downstream. The challenge, as explained by Moriarty &
Terrill (1996) and further discussed in a companion paper by McLeod (1996), is coupling
the flows upstream and downstream of the plate via the flow underneath it. These authors
demonstrated the existence of either zero, one or two steady-state solutions, depending
on the value of an appropriately defined inverse capillary number and the height of the
plate relative to the far-field film height. Subsequently, Quintans Carou et al. (2009)
showed that if gravity effects are included then there can be as many as three steady-state
solutions.

A limitation of the work by Moriarty & Terrill (1996) is that they largely ignored the
total vertical force and total moment of the forces on the plate and considered the special
case of a horizontal plate, i.e. the possibility of the plate tilting was mostly discounted.
Concerning the full problem in which the plate is allowed to tilt and both the total vertical
force and total moment of the forces on the plate are required to be zero, they state that

“In general, it is difficult to find values of h0 [the scaled height of the plate] and θ
[the tilt angle] such that the lens is in equilibrium.”

Furthermore, they conjectured that, for general values of the capillary number, there
is a height at which a horizontal plate is in equilibrium. In the present work we shall
demonstrate that this conjecture is not, in fact, true by showing that the horizontal
configuration is only an equilibrium solution in the two extreme cases of zero and infinite
capillary numbers; for general values of the capillary number, there is an equilibrium
solution with non-zero tilt angle.

It should be noted that Moriarty & Terrill (1996) were not the first to consider the
free-floating problem as a model for contact lens motion, and others (e.g. Conway &
Richman 1983 and Kamiyama & Kohnsari 2000) have considered similar configurations in
the context of lens modelling. Moreover, there is a large body of literature on the subject
of modelling contact lenses including additional physical effects, such as tear film rupture
(e.g. Wong et al. 1996), porosity of the lens (e.g. Nong & Anderson 2010), and the suction
pressure underneath the lens (e.g. Maki & Ross 2014).

Our strategy for studying the free-floating problem shown in Figure 1(b) is to first
consider the pinned problem shown in Figure 1(a). The plate is pinned at a fixed location
and in contact with a reservoir of fluid at its upstream end, and coupled to a single free
surface at its downstream end. In addition to reducing the complexity of the calculations,
the pinned problem is of interest in its own right (see below). Furthermore, as we shall
see, once the analytical and numerical subtleties of the pinned problem are understood,
then the extension to the free-floating problem is relatively straightforward (at least in
principle, if not always in practice).

Table 1 shows a selection of previous work on both the pinned and free-floating problems
for both rigid and elastic plates, and illustrates that the much of the previous work has
ignored the effect of surface tension, which is a key ingredient of the present work. The
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Free Surfaces Surface Tension Elasticity
Conway & Richman (1983) 0 no yes
Moriarty & Terrill (1996) 2 yes no

Kamiyama & Kohnsari (2000) 0 no yes
Hosoi & Mahadevan (2004) 0 no yes

Giacomin et al. (2012) 1 no yes
Hewitt et al. (2012) 0 no no

Dixit & Homsy (2013) 0 no yes
This work (Parts 1 and 2) 1 or 2 yes no and yes

Table 1. A selection of previous work on both the pinned and free-floating problems.

present work is concerned with the case of a rigid plate, but in Part 2 of our study we
will analyse the case of an elastic plate.

While the present problems are of interest in their own right as paradigms for a range
of fluid-structure interaction problems in which viscosity and surface tension both play
an important role, the present study was directly inspired by the recent growth of both
experimental and theoretical interest in a variety of elastocapillary problems. These
include the wetting of fibrous material (e.g. Bico et al. 2004, Duprat et al. 2012, Taroni
& Vella 2012, and Singh et al. 2014), the buckling of floating elastic sheets (e.g. Hosoi &
Mahadevan 2004, Audoly 2011, and Wagner & Vella 2011), blade coating using a flexible
blade (e.g. Pranckh & Scriven 1990, Iliopoulos & Scriven 2005, and Giacomin et al. 2012),
and the elastic drag-out problem (e.g. Dixit & Homsy 2013). Also relevant here is the
recent work by Hewitt & Balmforth (2012) and Hewitt et al. (2012) on the so-called
“washboard” instability which can be created by moving a pivoted rigid plate over a layer
of fluid or granular material. While in many situations the effect of elasticity plays a key
role, one of the main conclusions of the present work is that even the deceptively simple
problem of a rigid plate moving relative to a rigid substrate has considerable difficulties
and subtleties which must be understood before elastic effects can be fully understood.

The outline of our paper is as follows. In §2, we formulate the equations and boundary
conditions for a rigid plate lying on the free surface of a thin film of viscous fluid.
Asymptotic and numerical analyses of the pinned problem and of the free-floating problem
are described in §3 and §4, respectively. Finally in §5, we conclude with a short discussion.

2. Mathematical formulation for a rigid plate

Consider the steady two-dimensional flow of a thin film of Newtonian fluid with constant
density ρ, viscosity µ, and surface tension γ, which lies on top of a rigid horizontal substrate
that is moving to the right with constant speed U and is located at z = 0 in the natural
Cartesian coordinate system (x, z). A rigid plate of length L lies on the free surface of
the film, which is denoted by z = h(x), and the height of the plate above the substrate is
denoted by z = H(x) for 0 < x < L. Note that while the shape of the plate is prescribed,
both its position and orientation are unknown, and hence, like the location of the free
surface, the location of the plate has to be determined as part of the solution to the
problem. For the present, the shape of the plate will be left general, but subsequently we
shall consider the case of a flat (but not, in general, horizontal) plate.

While the following description of the thin-film flow underneath the plate and the free
surface is now relatively standard, what makes the present problem challenging is the
freedom in both the position and orientation of the plate, and the coupling of the regions
upstream and downstream of the plate via the flow underneath it.
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The pressure and velocity of the fluid are denoted by p = p(x) and u = (u(x, z), w(x, z)),
respectively, and we assume that the atmosphere above the plate and the free surface is
inviscid and at a uniform atmospheric pressure which we take to be zero without loss of
generality. Since the systems we are interested in are typically small, the effect of gravity
will be neglected in the present analysis. Using primes (′) to denote non-dimensional
quantities, we non-dimensionalise the variables according to

x = Lx′, z = εLz′, h = εLh′, u = Uu′, v = εUv′, p =
µU

ε2L
p′, (2.1)

where ε = H/L� 1 is the aspect ratio of the film in which the characteristic dimensional
film height H will be defined explicitly for the two problems we will consider in §3 and
§4, respectively. Now dropping the prime notation and assuming that all variables are
henceforth dimensionless unless stated otherwise, we find that at leading order in the
thin-film (i.e. small aspect ratio) limit, ε→ 0, the mass conservation and Navier–Stokes
equations reduce to the familiar two-dimensional lubrication equations, given by

continuity: ux + wz = 0, (2.2a)

x-momentum: px = uzz, (2.2b)

z-momentum: pz = 0, (2.2c)

where subscripts denote derivatives. On the substrate z = 0 and the plate z = H(x) the
usual no-slip and no-penetration conditions apply, whereas on the (clean) free surface
z = h(x) the usual balances of normal and tangential stress hold. In the thin-film limit
the appropriate boundary conditions are

no slip and no penetration on the substrate: (u,w) = (1, 0) on z = 0, (2.3a)

no slip and no penetration on the plate: (u,w) = (0, 0) on z = H(x), (2.3b)

normal stress on the free surface: p = −δ3hxx on z = h(x), (2.3c)

tangential stress on the free surface: uz = 0 on z = h(x), (2.3d)

where

δ3 =
γε3

µU
=

1

Ca
(2.4)

is a suitably defined inverse capillary number. (Note that this definition of δ differs by a
factor of 3 from that used by Moriarty & Terrill 1996.)

2.1. Flow underneath the free surface

Underneath the free surface, the momentum equations (2.2b) and (2.2c) can be integrated,
and using the boundary conditions (2.3a) and (2.3d) yields the horizontal velocity

u =
px
2

(z2 − 2hz) + 1. (2.5)

The constant volume flux per unit width (non-dimensionalised with εUL) underneath
the free surface, Q, is therefore given by

Q =

∫ h

0

u dz = −h
3px
3

+ h, (2.6)

and hence the pressure p satisfies

px =
3(h−Q)

h3
. (2.7)
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Substituting for px from (2.7) into (2.5) and re-arranging yields

u =
3(h−Q)(z − 2h)z + 2h3

2h3
. (2.8)

Since from (2.2c) p is independent of z, then the boundary condition (2.3c) means that

p = −δ3hxx (2.9)

throughout the fluid, and so substituting for p into (2.7) shows that the free surface h
satisfies the familiar Landau–Levich equation

δ3hxxx =
3(Q− h)

h3
(2.10)

(see, for example, Tuck & Schwartz 1990). Far from the plate the free surface approaches
the uniform far-field height h∞, i.e. h→ h∞, and hence from (2.10) the flux is given by
Q = h∞.

2.2. Flow underneath the plate

Underneath the plate (i.e. for 0 6 x 6 1), the momentum equations (2.2b) and (2.2c)
can again be integrated, and using the boundary conditions (2.3a) and (2.3b) yields the
horizontal velocity

u =
px
2

(z2 −Hz)− z

H
+ 1. (2.11)

The flux underneath the plate (which must, of course, be equal to the flux underneath
the free surface given by (2.6)), Q, is therefore given by

Q =

∫ H

0

u dz = −H
3px
12

+
H

2
, (2.12)

and hence the pressure p satisfies

px =
6(H − 2Q)

H3
. (2.13)

Substituting for px from (2.13) into (2.11) and re-arranging yields

u =
[3(2Q−H)z +H2](H − z)

H3
. (2.14)

Integrating (2.13) with respect to x shows that p is given by

p = p(0) + 6I2(x)− 12QI3(x), (2.15)

where, for convenience, we have defined the integral In by

In(x) =

∫ x

0

1

Hn(x̃)
dx̃ (2.16)

(see, for example, Duffy et al. 2007).

2.3. A rigid flat plate

Thus far, the formulation of the problem has been for a rigid plate of general shape. For
simplicity, we now restrict our attention to the particular choice of a flat (but not, in
general, horizontal) plate given by

H = H0 + αx, (2.17)



6 Trinh, Wilson, and Stone

Unknowns Equations Boundary conditions
α, h∞ H = 1 + αx

δ3hxxx = 3(h∞ − h)/h3

px = 6(H − 2h∞)/H3

[1] p(0) = p0
[2] h(1) = H(1) = 1 + α
[3] [p] = 0 at x = 1
[4,5] h→ h∞ as x→∞
[6] M0 = 0

Table 2. A summary of the equations and boundary conditions of the sixth-order rigid pinned
problem.

where α (which must satisfy α > −H0 for the solution to be physically realisable) is the
unknown tilt angle measured anti-clockwise from the horizontal.

In this case, the integrals I2 and I3 defined by (2.16) can be evaluated readily, and,
for convenience, are given by (A 1a) and (A 1b) in the Appendix. Hence from (2.15) the
pressure underneath the plate is given by

p = p(0) +
6 [H0(H0 + αx)−Q(2H0 + αx)]x

H2
0 (H0 + αx)2

. (2.18)

Note that (2.18) is simply the classical solution for the pressure underneath a linear slider
bearing, and setting p(1) = p(0) would recover the classical result for the flux, namely
Q = H0(H0 + α)/(2H0 + α). However, in the present problem the value of Q = h∞ is
determined by the far-field film height and the situation is considerably more complicated
due to the coupling of the pressures at the two ends of the plate via the flow underneath
it, the influence of surface tension, and the freedom in both the position and orientation
of the plate.

3. The pinned problem

Consider now the case of flow underneath a rigid flat plate that is pinned at a fixed
dimensional height H0 and in contact with a reservoir of fluid held at a prescribed constant
dimensional pressure P0 at its upstream end, as shown in Figure 1(a).

In this problem we choose H = H0 for the characteristic dimensional film height in
(2.1); this sets the non-dimensional height of the upstream (i.e. the pinned) end of the
plate to be H(0) = 1, and so from (2.17) the non-dimensional height of the plate is given
by H = 1 + αx, where α > −1, and the non-dimensional prescribed pressure is denoted
by p0 = p(0). The solutions for the velocity u and pressure p underneath the free surface
are given by (2.8) and (2.9), while the corresponding solutions underneath the plate are
given by (2.14) and (2.15). The height of the free surface downstream of the plate is
obtained by solving the Landau–Levich equation (2.10) subject to appropriate matching
conditions at the downstream (i.e. the free) end of the plate and the far-field condition
h→ h∞ as x→∞.

A summary of all the relevant equations and boundary conditions is given in Table 2,
and the solution of the pinned problem when δ = 0.25 and p0 = −5, computed numerically
as described subsequently in §3.1, is shown in Figure 2. We note that in Table 2 the
downstream condition provides two boundary conditions. The reason for this is that if we
write h = h∞ + h, where h� h∞, then according to a standard WKB analysis,

h ∼ C1 exp

(
−31/3x

δh∞

)
+ C2 exp

(
31/3eπi/3x

δh∞

)
+ C3 exp

(
31/3e−πi/3x

δh∞

)
(3.1)
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Figure 2. The solution of the pinned problem when δ = 0.25 and p0 = −5, for which we find
numerically that α ' −0.828 and h∞ ' 0.130. Re-scaled velocity profiles, 0.25u(x, z), are plotted
as functions of z for x = 0.25, 0.75, 1.25, 1.75. The inset shows the fluid pressure, p(x).

as x → ∞ (see, for example, Tuck & Schwartz 1990). The two exponentially growing
modes, which represent capillary waves, are ruled out on physical grounds, so that C2 = 0
and C3 = 0, and leaving only C1 to be determined.

At the downstream end of the plate we assume that the free surface is pinned to the
end of plate and impose continuity of height, namely h(1) = H(1) = 1 + α, and pressure.
The pressure of the fluid underneath the plate (2.15) is continuous with the pressure of
the fluid underneath the free surface (2.9) at x = 1 provided that

p0 + 6I2(1)− 12h∞I3(1) = −δ3hxx(1), (3.2)

and hence

p0 +
6 [1 + α− h∞(2 + α)]

(1 + α)2
+ δ3hxx(1) = 0. (3.3)

The condition (3.3) explicitly couples the free surface downstream of the plate to the
prescribed pressure at its upstream end, p0, via the flow underneath it.

The final condition requires zero total moment of the forces on the plate about its
pinned end. The expression for the moment per unit width (non-dimensionalised with
µUL/ε2) about x = 0, M0, is given by

M0 =

∫ 1

0

xp dx+ δ3[hx(1) +H(0)−H(1)] = 0, (3.4)

where the first term represents the moment of the normal force on the plate due to the
fluid underneath it, and the second term is the moment of the normal surface-tension
force acting at the downstream end of the plate, x = 1. Substituting the expression for
the pressure underneath the plate (2.15) into (3.4) yields

M0 =
p0
2

+

∫ 1

0

[6xI2(x)− 12h∞xI3(x)] dx+ δ3[hx(1)− α] = 0, (3.5)

where the integrals of xI2 and xI3 (both of which are functions of α) are given by (A 2c)
and (A 2d) in the Appendix with H0 = 1.
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The two key unknowns in the pinned problem are thus the tilt angle, α, and the far-field
film height, h∞; once these two quantities are determined, the problem is solved for a
given p0 and δ. The counting argument in Table 2 shows that the pinned problem is a
sixth-order problem, which is completely determined through the six boundary conditions
we have just discussed.

The horizontal and vertical components of the total force per unit width (non-
dimensionalised with µU/ε2) on the plate, F = (Fx, Fz), are given by

Fx =
δ3

ε
− ε
[∫ 1

0

Hxp dx+

∫ 1

0

uz

∣∣∣
z=H

dx+
δ3

2
h2x(1)

]
, (3.6a)

Fz =

∫ 1

0

p dx+ δ3hx(1), (3.6b)

respectively. Using the expressions for the velocity underneath the plate (2.14), the height
of the plate (2.17), the pressure underneath the plate (2.18), and the integrals of I2 and
I3 given by (A 2a) and (A 2b) in the Appendix, we obtain

Fx =
δ3

ε
− ε
[
αp0 +

2{3α− 2 log(1 + α)}
α

− 6h∞ +
δ3

2
h2x(1)

]
, (3.7a)

Fz = p0 +
6{α− log(1 + α)}

α2
− 6h∞

1 + α
+ δ3hx(1). (3.7b)

In the present case of a pinned plate, the pivot will exert the necessary reactive force such
that the horizontal and vertical forces are balanced; however, for the case of a free-floating
plate, the force balances require further consideration, which will be discussed in §4.1.

3.1. Numerical method for the pinned problem

For general values of δ, the pinned problem can be solved numerically by reposing the
boundary value problem summarised in Table 2 as the following nested shooting problem
(see, for example, Tuck & Schwartz 1990).

For each value of δ, begin by guessing an initial value of the tilt angle,

α ' αguess, (3.8)

and the far-field film height,

h∞ ' h∞,guess. (3.9)

Next, by writing h = h∞,guess+κ, where κ is a numerically small perturbation (κ = 10−8

in our calculations), the far-field behaviour (3.1) is used to provide the values of h′ and
h′′. With these three initial conditions, the Landau–Levich equation (2.10) is solved for
the film height, h, until reaching the value of h = 1 + αguess at the downstream end of
the plate.

At this point, the pressure and surface-tension forces at the ends of the plate are known
(albeit for incorrect values of α and h∞). The correct value of α is found by solving the
zero moment condition (3.5) using Newton’s method. Finally, the correct value of h∞
is found by requiring that the pressure at x = 0 is equal to the prescribed pressure, i.e.
p(0) = p0. This nested shooting method can be concisely written as the solution of the
pair of coupled equations,

F(h∞; δ) ≡ p(0)− p0 = 0 and G(α; h∞, δ) ≡M0 = 0. (3.10)

In general, we have found that the pinned problem is robust to most choices for the
initial conditions, i.e. most guesses for α and h∞ will lead to convergence. Solutions for a
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Figure 3. (a) The far-field film height of the pinned problem, h∞, plotted as a function of δ for
five values of the prescribed pressure, p0 = −0.5, 1.1581, 2, 4 and 6. The two insets show four
specific solutions, indicated on the main figure by ¬ to ¯. The critical value of p0 that separates
the two different behaviours in the limit δ → 0 is p0 = pcrit0 ' 1.1581 (shown with the dashed
line). (b) The tilt angle, α, plotted as a function of δ.

range of values in δ can be computed by beginning with either a very small or a very large
value of δ, and using the asymptotic solutions obtained subsequently in §3.2 and §3.3
as initial guesses. Solutions for other values of δ are then computed through numerical
continuation. The solution of the pinned problem when δ = 0.25 and p0 = −5 was shown
in Figure 2.

Figure 3(a) shows the far-field film height, h∞, plotted as a function of δ for five values
of the prescribed pressure, p0. The two insets show four specific solutions, indicated on
the main figure by ¬ to ¯. In the limit δ →∞, corresponding to slow substrate motion
and/or strong surface tension (discussed in §3.2), the far-field height always approaches
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h∞ = 1, but in the limit δ → 0, corresponding to fast substrate motion and/or weak
surface tension (discussed in §3.3), the far-field height may either approach a finite value
(as it does for p0 = −0.5) or may tend to infinity (as it does for p0 = 2, 4 and 6.5). We
will show in §3.3 that the critical value of p0 that separates the two different behaviours
in the limit δ → 0 is p0 = pcrit0 ' 1.1581 (shown with the dashed line in Figure 3). Figure
3(b) shows the tilt angle, α, plotted as a function of δ; in general, the trends of α are
qualitatively similar to the corresponding trends of h∞.

3.2. Asymptotic analysis for slow substrate motion and/or strong surface tension
(δ � 1)

At leading order in the limit δ → ∞, the plate is horizontal, α = 0, with pressure
p = p0 − 6x and velocity u = (1 + 3z)(1− z) underneath it, and the free surface is flat
and at the same height as the pivot, h ≡ h∞ = 1.

At higher order, the free surface varies slowly over a long length scale of O(δ) � 1.
Introducing an appropriately rescaled horizontal coordinate defined by x = 1 + δX, we
seek solutions in the form

α =

∞∑
n=1

αn
δn
, h∞ = 1 +

∞∑
n=1

h∞n
δn

, h(x) = 1 +

∞∑
n=1

hn(X)

δn
. (3.11)

Substituting the expansions (3.11) into the Landau–Levich equation (2.10) shows that
the first-order solution for the free surface, h1 = h1(X), satisfies h1XXX = 3(h∞1 − h1)
subject to h1(0) = α1 and h1 → h∞1 as X →∞, and hence is given by h1 = h∞1 + (α1−
h∞1) exp

(
−31/3X

)
. Imposing the pressure condition (3.3) and the moment condition

(3.5) yields α1 = 0, α2 = h1X(0) and h1XX(0) = 6−p0, and hence we obtain the solutions

α =
p0 − 6

31/3δ2
+O

(
1

δ3

)
, (3.12)

h∞ = 1 +
p0 − 6

32/3δ
+O

(
1

δ2

)
, (3.13)

h(x) = 1 +
p0 − 6

32/3δ

[
1− exp

(
−31/3x

δ

)]
+O

(
1

δ2

)
. (3.14)

In particular, these solutions show that when p0 < 6 (i.e. when the leading-order pressure
at the downstream end of the plate is negative) the first-order effect of slow substrate
motion and/or strong surface tension is to slightly tilt the plate downwards from the
horizontal and to slightly decrease the height of the free surface. However, when p0 > 6
(i.e. when the leading-order pressure at the downstream end of the plate is positive) the
opposite behavior occurs. In the special case p0 = 6 it is straightforward to show that

α = δ−3 +O(δ−4), h∞ = 1 + δ−3 +O(δ−4), h(x) = 1 + δ−3 +O(δ−4). (3.15)

3.3. Asymptotic analysis for fast substrate motion and/or weak surface tension (δ � 1)

At leading order in the limit δ → 0, the plate is tilted at an angle α = α0 and the free
surface is flat and at the height h ≡ h∞ = h∞0 except in a narrow inner region near the
downstream end of the plate of width O(δ)� 1 in which it varies rapidly to match the
height of the end of the plate.

Introducing an appropriately rescaled inner horizontal coordinate defined by x = 1+δX,
the leading-order solution for the free surface in the inner region, h0 = h0(X), satisfies
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Figure 4. The prescribed pressure, p0, plotted as a function of the logarithm of the leading-order
film height, log(h∞0), in the limit δ → 0, showing that there is one solution when p0 6 0, two
solutions when 0 < p0 < pcrit0 ' 1.1581, one solution when p0 = pcrit0 , and no solution when
p0 > pcrit0 . The dashed line corresponds to the leading-order behaviour in the limit p0 → 0+ in
which h∞0 →∞, namely log h∞0 = 3/p0, and the triangle shows the slope of the leading-order
behaviour in the limit p0 → −∞, namely log h∞0 = p0/12.

the Landau–Levich equation

h0XXX =
3(h∞0 − h0)

h30
(3.16)

subject to h0(0) = 1+α0 and the matching condition h0 → h∞0 as X →∞. However, this
leading-order inner solution is not required in order to determine either the leading-order
tilt angle, α0, or the leading-order film height, h∞0. Specifically, from the leading-order
version of the pressure condition (3.3), h∞0 is given explicitly by

h∞0 =
(1 + α0)[6 + (1 + α0)p0]

6(2 + α0)
, (3.17)

and α0 can be determined from solving the leading-order version of the moment condition
(3.5), that is, using

p0
2

+

∫ 1

0

[6xI2(x)− 12h∞xI3(x)] dx = 0. (3.18)

Figure 4 shows the prescribed pressure, p0, plotted as a function of the logarithm of
the leading-order film height, log(h∞0). In particular, Figure 4 shows that there is one
solution when p0 6 0, two solutions when 0 < p0 < pcrit0 ' 1.1581, one solution with
α0 ' 6.9022 and h∞0 ' 2.2416 when p0 = pcrit0 , and no solution when p0 > pcrit0 .

Consider first the special case of no prescribed pressure, p0 = 0. In this case the plate is
horizontal, α0 = 0, with zero pressure, p = 0, and simple shear flow, u = 1−z, underneath
it, and the film height is exactly half the height of the plate, h∞0 = 1/2. The Landau–
Levich equation (3.16) is solved numerically by shooting from near h0 = h∞0 = 1/2 with
the appropriate far-field behaviour (3.1), and stopping once the value h0 = 1 is reached.
This provides the leading-order values of the slope and the curvature of the free surface
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at the end of the plate, with

h0X(0) ∼ −0.736

(
31/3

h∞0

)
' −2.123, (3.19a)

h0XX(0) ∼ 0.424

(
31/3

h∞0

)2

' 3.528. (3.19b)

Proceeding to first order we find that

α = −4δh0XX(0)

3
+O(δ2) and h∞ =

1

2
− δh0XX(0)

4
+O(δ2). (3.20)

In particular, these solutions show that since h0XX(0) > 0, the first-order effect of fast
substrate motion and/or weak surface tension is to slightly tilt the plate downwards from
the horizontal and to slightly decrease the film height from 1/2.

In the limit of small prescribed pressure, p0 → 0, the solution approaches the bounded
solution in the case p0 = 0 according to

α0 ∼
2p0
3
→ 0 and h∞0 ∼

1

2
+
p0
6
→ 1

2
. (3.21)

In the limit of small positive prescribed pressure, p0 → 0+, the other solution becomes
unbounded according to

α0 ∼ exp

(
3

p0
+

3

2

)
→∞ and h∞0 ∼

p0
6

exp

(
3

p0

)
→∞. (3.22)

The dashed line shown in Figure 4 corresponds to the leading-order behaviour of this
solution, namely log h∞0 = 3/p0.

Finally, in the limit of large negative prescribed pressure, p0 → −∞, the plate is sucked
towards the substrate by the large negative pressure generated underneath it and almost
all of the fluid is trapped behind the plate. However, the motion of the substrate generates
a sufficiently large positive pressure near the downstream end of the plate to prevent
the gap closing entirely. Specifically, α0 and h∞0 approach −1 and zero, respectively,
exponentially from above according to

α0 ∼ −1 + exp
(p0

12

)
→ −1+ and h∞0 ∼ exp

(p0
12

)
→ 0+. (3.23)

The triangle shown in Figure 4 corresponds to the slope of the leading-order behaviour of
this solution, namely log h∞0 = p0/12.

Note that, in addition to these bounded (regular) solutions there is also a unbounded
(singular) solution for all p0 > 0 for which h∞ →∞ as δ → 0, which disappears in the
limiting case δ = 0.

3.4. Numerical solutions for general values of δ

As we have just seen, in the limiting case δ = 0 there are zero, one or two bounded
solutions of the pinned problem. In fact, as we shall now describe, numerical solutions
for general values of δ reveal that for all non-zero values of δ there are between one and
three solutions.

Figure 5 shows the far-field film height, h∞, plotted as a function of the prescribed
pressure, p0, for various values of δ calculated using the numerical method described in
§3.1. In the limit δ → 0 the bounded solutions approach the asymptotic solutions for
p0 6 pcrit0 described in §3.3 (shown with the dashed line) and illustrated in Figure 4.
Provided that the value of δ is not too large (specifically, provided that δ < δ∗ where
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Figure 5. The far-field film height of the pinned problem, h∞, plotted as a function of the
prescribed pressure, p0, for various values of δ. The dashed line corresponds to the bounded
asymptotic solution in the limit δ → 0 described in §3.3, while the thick line corresponds to the
critical solution with δ = δ∗ ' 0.00595 at which the three solutions merge into one at a point of
vertical tangency at p0 = p∗0 ' 1.26 and h∞ = h∗∞ ' 4.04. Note that the p0-axis should extend to
negative values (see Figure 4), but it has been truncated to better show the details near δ = δ∗.
The inset shows the three solutions in the case δ = 0.005 (< δ∗) and p0 = 1.232 (< p∗0), indicated
on the main figure by ¬ to ®.

the value δ∗ ' 0.00595 was calculated numerically), then h∞ is an “S shaped” function
of p0, and so, depending on the value of p0, there are between one and three solutions.
At δ = δ∗ (shown with the thick line), the three solutions merge into one at a point of
vertical tangency at p0 = p∗0 ' 1.26 and h∞ = h∗∞ ' 4.04, and thereafter for δ > δ∗ then
h∞ is a monotonically increasing function of p0 and so there is only one solution for all
values of p0. Similarly, for p0 > p∗0 there is only one solution for all values of δ.

The inset in Figure 5 shows the three solutions in the case δ = 0.005 (< δ∗) and
p0 = 1.232 (< p∗0); they are distinguished by their increasing values of α and h∞. Although
we do not study the stability of such solutions, we conjecture that only the solution that
corresponds to the smallest values of α and h∞ are stable (see Quintans Carou et al. 2009
for the stability analysis for the case of a fixed horizontal plate).

4. The free-floating problem

We now turn to the case of flow underneath a free-floating rigid flat plate, as shown in
Figure 1(b), that is, the “contact lens problem” of Moriarty & Terrill (1996).

In this problem we choose H = h∞ for the characteristic dimensional film height in
(2.1); this sets the non-dimensional far-field film height to be h∞ = 1. From (2.17) the
non-dimensional height of the plate is given by H = H0 + αx, where α > −H0. As
for the pinned problem, the solutions for the velocity u and pressure p underneath the
free surfaces are given by (2.8) and (2.9), while the corresponding solutions underneath
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Unknowns Equations Boundary conditions
α, H0 H = H0 + αx

δ3hxxx = 3(1− h)/h3

px = 6(H − 2)/H3

[1] h(0) = H0

[2] h(1) = H(1) = H0 + α
[3] [p] = 0 at x = 0
[4] [p] = 0 at x = 1
[5] h→ h∞ as x→ −∞
[6, 7] h→ h∞ as x→∞
[8] Fz = 0
[9] M = 0

Table 3. A summary of the equations and boundary conditions of the ninth-order rigid
free-floating problem.

H(x)

h(x)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5
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2.5

x

h
−2 −1 0 1 2 3

−0.04

−0.02

0

0.02

Fluid pressure, p(x)

Figure 6. The solution of the free-floating problem when δ = 0.104 for which we find numerically
that α ' 0.838 and H0 ' 2.374. Re-scaled velocity profiles, 0.25u(x, z), are plotted as functions
of z for x = −1, 0.2, 0.75, 2. The inset shows the fluid pressure, p(x).

the plate are given by (2.14) and (2.15). The height of the free surfaces upstream (i.e.
for x < 0) and downstream (i.e. for x > 1) of the plate are obtained by solving the
Landau–Levich equation (2.10) subject to appropriate matching conditions at both ends
of the plate and the far-field conditions h→ 1 as |x| → ∞.

A summary of all the relevant equations and boundary conditions is given in Table
3, and the solution of the free-floating problem when δ = 0.104, computed numerically
as described subsequently in §4.2, is shown in Figure 6. From the earlier discussion
concerning (3.1), the downstream condition again rules out the two exponentially growing
modes. Upstream, however, only the single exponentially growing mode is excluded on
physical grounds, so that C1 = 0, but leaving both C2 and C3 to be determined. Thus, in
total, the far-field conditions provide three boundary conditions.

At both ends of the plate we again assume that the free surface is pinned to the end
of plate and impose continuity of height, namely h(0) = H(0) = H0 and h(1) = H(1) =
H0 + α, and pressure. The condition of continuity of pressure at x = 0 yields

p(0) = −δ3hxx(0). (4.1)
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Using (4.1) the condition of continuity of pressure at x = 1 yields

6I2(1)− 12I3(1) + δ3 [hxx(1)− hxx(0)] = 0, (4.2)

and hence
6[H0(H0 + α)− (2H0 + α)]

H2
0 (H0 + α)2

+ δ3 [hxx(1)− hxx(0)] = 0. (4.3)

The condition (4.3) explicitly couples the free surfaces upstream and downstream of the
plate via the flow underneath it.

The two remaining unknowns, namely the tilt angle, α, and the height of the plate at
x = 0, H0, are determined by imposing zero total vertical force on the plate, Fz = 0, and
zero total moment about any point of the plate, M = 0.

The condition of zero total vertical force on the plate requires that

Fz =

∫ 1

0

p dx+ δ3 [hx(1)− hx(0)] = 0, (4.4)

where the first term represents the vertical force on the plate due to the fluid underneath
it, and the second term is the vertical component of the surface-tension forces acting at
both ends of the plate. Substituting the expression for the pressure underneath the plate
(2.15) into (4.4) and using (4.1) yields

Fz = −δ3hxx(0) + 6

∫ 1

0

[I2(x)− 2I3(x)] dx+ δ3 [hx(1)− hx(0)] = 0, (4.5)

and hence

Fz = −δ3hxx(0)+
6

α2H0

[
α−H0 log

(
H0 + α

H0

)]
− 6

H2
0 (H0 + α)

+δ3 [hx(1)− hx(0)] = 0.

(4.6)
The condition of zero total moment of the forces on the plate about any point on the

plate, x = xp (0 6 xp 6 1), is given by

M =

∫ 1

0

(x− xp)p dx+ δ3 [(1− xp)hx(1) + xphx(0) +H(0)−H(1)] = 0, (4.7)

where the first term represents the moment of the normal force on the plate due to the
fluid underneath it, and the second term is the moment of the normal surface-tension
forces acting at both ends of the plate, x = 0 and x = 1. Using the zero total vertical
force condition (4.4) to eliminate the integral of p appearing in the first term of (4.7)
yields

M =

∫ 1

0

xp dx+ δ3[hx(1) +H(0)−H(1)] = 0, (4.8)

and hence

M = −δ
3hxx(0)

2
+

∫ 1

0

[6xI2(x)− 12xI3(x)] dx+ δ3[hx(1)− α] = 0, (4.9)

where the integrals of xI2 and xI3 (both of which are functions of α and H0) are given
by (A 2c) and (A 2d) in the Appendix.

Note that in the special case of a horizontal plate, i.e. the special case α = 0, equations
(4.6) and (4.9) reduce to

Fz = −δ3hxx(0) +
3(H0 − 2)

H3
0

+ δ3 [hx(1)− hx(0)] = 0 (4.10)
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and

M = −δ
3hxx(0)

2
+

2(H0 − 2)

H3
0

+ δ3hx(1) = 0, (4.11)

respectively. Equation (4.10) is equivalent to the expression for the total vertical force on
the plate given by Moriarty & Terrill (1996) [their equation (2.9)]. Similarly, equation
(4.11) is equivalent to their expression for the total moment of the force on the plate if
the condition Fz = 0 is used [their equation (2.10)].

4.1. The realistic nature of the present steady-state solutions

At this point, the observant reader may ask: if the substrate is moving to the right,
then what is keeping the plate held in place in the present steady-state solutions? For the
free-floating plate the total horizontal force on the plate is given by an expression similar
to (3.6a), namely

Fx = −ε
[∫ 1

0

Hxp dx+

∫ 1

0

uz

∣∣∣
z=H

dx+
δ3

2

{
h2x(1)− h2x(0)

}]
, (4.12)

and is thus of higher order in the aspect ratio ε than the vertical component Fz given by
(4.6). Nevertheless, Fx will be non-zero, and hence the steady-state contact lens problem
of Moriarty & Terrill (1996) does not provide a proper balance of horizontal forces, and
so in reality, the plate would be swept downstream by the flow. Thus, as we have posed it,
the free-floating problem must be accompanied by a small imposed horizontal force, which
holds the plate in place horizontally but allows its vertical position to be determined by
the flow.

There is, however, a less artificial interpretation of our results for the free-floating
problem in a context in which the parameter δ is associated with time dependence. From
(4.12) the dimensional drag per unit width per unit length of the plate is O(µU/εL),
and hence if we consider a plate of dimensional mass per unit width, m, moving over a
stationary substrate at a non-constant dimensional speed U = U(t) then, by Newton’s
second law,

m
dU

dt
∼ −µU

ε
. (4.13)

Thus, we can interpret the present “steady-state” solutions as snapshots in time where
the speed U = U(t), and hence the non-dimensional parameter δ = δ(t) = (γε3)(µU(t)),
is not prescribed, but is rather evolved using (4.13). A sequence of solutions for increasing
values of δ then corresponds to a quasi-steady time evolution of a plate as it ultimately
comes to rest (i.e. to speed U = 0) in the limit δ →∞.

4.2. Numerical method for the free-floating problem

Similarly to the pinned problem, for general values of δ, the free-floating problem can be
solved numerically by reposing it as a nested shooting problem; now, however, we must
deal with the added difficulty of matching the upstream and downstream flows.

For each value of δ, begin by guessing an initial value of the tilt angle,

α ' αguess, (4.14)

and the height of the upstream end of the plate,

H0 ' H0,guess. (4.15)

By writing h = 1 + κ, where κ is a numerically small perturbation (κ = 10−8 in our
calculations), the far-field behaviour (3.1) is used to provide the values of h′ and h′′. With
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these three initial conditions, the Landau–Levich equation (2.10) is solved for the film
height, h, until reaching the value of h = 1 + αguess at the downstream end of the plate.

Next, the correct value of α (albeit for an incorrect value of H0) is found by applying
the zero moment condition (4.9), and thereafter, both the height and the curvature of
the free surface at the upstream end of the plate are “known”. As was demonstrated in
Moriarty & Terrill (1996) and McLeod (1996) (see also Tuck & Schwartz 1990), for each
pair of values of h(0) and hxx(0) there exists zero, one or two possible values of hx(0)
such that the free surface tends to the constant value h = 1 as x → −∞. To be more
specific, and to remove the δ dependence, let us write x = −Cs where C = 3−1/3δ. This
transforms the Landau–Levich equation (2.10) into

hsss =
h− 1

h3
, (4.16)

where s > 0 corresponds to upstream and s < −1 to downstream. For a given pair of
values of h(0) and hss(0), let us write h∗s for a correct value of hs(0) (if it exists), such
that h→ 1 as s→∞. If the Landau–Levich equation (4.16) is solved with hs(0) > h∗s,
then the solution blows up; if instead it is solved with hs(0) < h∗s, then the solution
intersects the substrate at a finite value of s.

The process of selecting the correct value (or values) of hs(0) = h∗s can be automated
by using a bisection method as follows. We specify an interval [0, smax], where smax is
sufficiently large and solve (4.16), searching for an initial lower bound hlower

s (above
which the solution intersects the substrate), and for an initial upper bound huppers

(below which the solution tends to infinity). Equation (4.16) is then solved with hs(0) =
(hlower
s + huppers )/2, and depending on its behaviour, we assign this new value of hs(0)

to either hlower
s or huppers ; the process is repeated until the bisection interval is smaller

than a certain tolerance (10−8 in our calculations). Figure 7 shows the three-dimensional
surface formed by the triplet of values {h(0), hs(0), hss(0)}. Note that although we can
generally use interpolated values of the surface to provide an initial guess of the correct
shooting value, the sensitivity of the boundary value problem requires that, in order to
achieve a reasonable degree of accuracy, the bisection method be applied for each new
numerical calculation.

Once the correct value of hx(0) has been computed, then the zero vertical force condition
(4.6) provides us with the error in using the incorrect value of H0,guess. A nonlinear solver
(such as Newton’s method) is then applied to find the correct values of α and H0. The
major difficulty of the free-floating problem over that of the pinned problem described
in §3.1, is the necessity of automating the numerical solution for the upstream problem.
The solution of the free-floating problem when δ = 0.104 was shown in Figure 6.

Figure 8 shows the tilt angle, α, plotted as a function of δ, and the two rightmost
insets show six specific solutions, indicated on the main figure by ¬ to ±. The tilt angle
tends to zero in the limits δ → 0 and δ → ∞, showing that a horizontal plate satisfies
the equilibrium conditions of zero vertical force and zero moment in these two extreme
situations (as was originally claimed by Moriarty & Terrill 1996), but for any finite and
non-zero value of δ, the plate must tilt and move upwards or downwards in order to satisfy
the equilibrium conditions. The plot for the height of the upstream end of the plate, H0,
as a function of δ (not shown for brevity) shows that the trends of H0 are qualitatively
similar to the corresponding trends of α, but with H0 = 2 at δ = 0, increasing to a
maximum initially as δ increases, and then decreasing again to H0 = 2 from above as
δ →∞.

The intrinsic difficulty of the shooting procedure for the free-floating problem lies in the
fact that, for a given position of the upstream end of the plate, h(0), the combinations of
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Figure 7. Plot of hss(0) as a function of h(0) and hs(0) for which solutions of the Landau–Levich
equation (4.16) tend to the constant value h = 1 as s → ∞. Projected onto the plane is the
solution corresponding to a fixed value, h(0) = 1, and on this plane the gray-white-gray zones
delineate, from top to bottom, regions where there is one solution, two solutions, and no solutions.

possible upstream free-surface slopes, hs(0), and curvatures, hss(0), depend on where one
lies on the surface shown in Figure 7. Specifically, for a given value of hss(0) there may
be either zero, one or two corresponding values of hs(0). Non-unique solutions might be
possible; for example, if there exists a free-surface configuration with the same upstream
height, h(0), and curvature, hss(0), but two valid values of the upstream slope, hs(0),
for which the free surface tends to the constant value h = 1 upstream. However, the
numerical scheme is extremely complicated because the triplet of values {h(0), hs(0),
hss(0)} must then be linked to the downstream flow, and then to the conditions of zero
total force and moment. It can be verified that all of the present numerical solutions lie
to the left of the minimum in the {hs(0), hss(0)} graphs. However, we cannot be certain
whether or not other solutions exist, and searching for them numerically does not seem
to be possible using the current numerical scheme.

4.3. Asymptotic analysis for slow substrate motion and/or strong surface tension
(δ � 1)

At leading order in the limit δ → ∞, the plate is horizontal, α = 0, and at the same
height as the film, H0 = 1, and the free surface is flat, h ≡ h∞ = 1.

At higher order, the free surfaces upstream and downstream of the plate both vary
slowly over a long length scale of O(δ)� 1. Thus we seek solutions for α and H0 in the
form

α =

∞∑
n=1

αn
δn
, H0 = 1 +

∞∑
n=1

H0n

δn
. (4.17)
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Figure 8. The tilt angle of the free-floating problem, α, plotted as a function of δ. The two
rightmost insets show six specific solutions, indicated on the main figure by ¬ to ±. The leftmost
inset is an enlargement of the grey region in which the dashed line corresponds to the leading-order
behaviour in the limit δ → 0, namely α = −14.1 δ.

Writing x = 1 + δX and seeking a solution for the downstream free surface in the form

h(x) = 1 +

∞∑
n=1

hn(X)

δn
(4.18)

shows that h1 = h1(X) satisfies h1XXX = −3h1 subject to h1(0) = H01 +α1 and h1 → 0
as X →∞, and hence is given by

h1 = (H01 + α1) exp
(
−31/3X

)
. (4.19)

Similarly, writing x = δX̂ and seeking a solution for the upstream free surface in the form

h(x) = 1 +

∞∑
n=1

ĥn(X̂)

δn
(4.20)

shows that ĥ1 = ĥ1(X̂) satisfies ĥ1X̂X̂X̂ = −3ĥ1 subject to ĥ1(0) = H01 and ĥ1 → 0 as
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X̂ → −∞, and hence is given by

ĥ1(X̂) =
H01

cosφ
exp

(
31/3X̂

2

)
cos

(
35/6X̂

2
+ φ

)
, (4.21)

where the unknown phase angle φ is to be determined. Imposing (4.3), (4.6) and (4.8)
yields

α1 = 0, H01 =
2

32/3
' 0.9615, φ =

π

3
, (4.22)

and hence we obtain the solutions

α = O

(
1

δ2

)
, (4.23)

H0 =
2

32/3δ
+O

(
1

δ2

)
, (4.24)

h(x) = 1 +


2

32/3δ
exp

(
−31/3(x− 1)

δ

)
for x > 1

4

32/3δ
exp

(
31/3x

2δ

)
cos

(
35/6x

2δ
+
π

3

)
for x 6 0

+O

(
1

δ2

)
. (4.25)

4.4. Asymptotic analysis for fast substrate motion and/or weak surface tension (δ � 1)

At leading order in the limit δ → 0, the plate is horizontal, α = 0, and at twice the height
of the film, H0 = 2, and the free surface is flat, h ≡ h∞ = 1, except in narrow inner
regions near the upstream and downstream ends of the plate of width O(δ)� 1.

Writing x = 1 + δX the leading-order inner solution for the downstream free surface,
h = h0(X), satisfies the Landau–Levich equation (3.16) with h∞0 set equal to unity subject
to h0(0) = 2 and h0 → 1 as X → ∞. In particular, solving this problem numerically
yields the values h0X(0) ' −1.06 and h0XX(0) ' 0.882.

Similarly, writing x = δX̂ the leading-order inner solution for the upstream free surface,
ĥ0 = ĥ0(X̂), satisfies the Landau–Levich equation (3.16) with h∞0 set equal to unity

and X and h0 replaced by X̂ and ĥ0, respectively, subject to ĥ0(0) = 2 and ĥ0 → 1 as
X̂ → −∞. Solving this problem numerically requires one additional boundary condition,
and this is obtained by seeking the first-order-accurate solution for position of the plate
in the form α = δα1 +O(δ2) and H0 = 2 + δH01 +O(δ2). Imposing (4.3), (4.6) and (4.8)
yields

α1 = −16h0XX , H01 = 8h0XX , ĥ0X̂X̂(0) = h0XX(0), (4.26)

the third of which provides the additional boundary condition. Hence we obtain the
solutions

α = −14.1 δ +O(δ2) and H0 = 2 + 7.06 δ +O(δ2). (4.27)

The dashed line shown in the leftmost inset in Figure 8 corresponds to the leading-order
behaviour in the limit δ → 0, namely α = −14.1δ. Finally, solving numerically for the
leading-order inner solution for the upstream free surface yields the value ĥ0X̂(0) ' 1.59.

5. Discussion

In the present work we investigated two paradigm problems for a range of fluid-structure
interaction problems in which viscosity and surface tension both play an important role,
namely a pinned or free-floating rigid plate lying on the free surface of a thin film of
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viscous fluid, which itself lies on top of a horizontal substrate that is moving to the right
at a constant speed.

For the pinned problem we showed that, depending on the values of the inverse capillary
number, δ, and the prescribed pressure, p0, there are between one and three solutions
with non-zero tilt angle, with a unique solution for all p0 for sufficiently large values of
δ > δ∗ and for all δ for sufficiently large values of p0 > p∗0. For the free-floating problem
we showed that there is a solution with non-zero tilt angle for all values of δ. However, the
question of whether or not other solutions exist remains a challenging open problem. In
both problems we showed that, in contradiction to the conjecture by Moriarty & Terrill
(1996) for the free-floating problem, the plate has to tilt in order satisfy the equilibrium
conditions of zero vertical force and zero moment, and only becomes horizontal in the
limit δ →∞ and in the limit δ → 0 for the free-floating problem.

One of the main conclusions of the present work is that even the deceptively simple
problem of a rigid plate moving relative to a rigid substrate has considerable difficulties
and subtleties which must be understood before elastic effects can be fully understood.
The crux of the problem is the study of the Landau–Levich equation (2.10) which, while
simple in appearance, contains many hidden complications. For example, we observed in
§4 that in the upstream part of the flow, the multiplicity of solutions makes it difficult
to design a robust numerical routine, especially when such a routine must automate the
matching between upstream and downstream flows in the free-floating problem. So while
the numerical computations were used to verify the asymptotic solutions, in many cases,
obtaining a convergent numerical result demanded that we begin with the asymptotic
solutions as an initial guess. The difficulty of numerically computing the boundary value
problems summarized in Tables 2 and 3 makes obtaining the asymptotic solutions a
pragmatic necessity, rather than just a purely theoretical exercise.

In Part 2 of the present study we will build on the foundations laid in Part 1 to address
the case of an elastic plate which provided much of the original motivation for this work.
Mathematically, this requires coupling the third-order Landau–Levich equation for the
location of the free surface to a fifth-order (Euler-Bernoulli) equation for the location of
the plate, and introduces additional complications to obtaining numerical solutions to
the resulting coupled problem.
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Appendix A. Explicit expressions for I2, I3 and their integrals

With the height of the plate defined by (2.17), namely H(x) = H0 + αx, we have

I2(x) =

∫ x

0

1

H2(x̃)
dx̃ =

x

H0(H0 + αx)
, (A 1a)

I3(x) =

∫ x

0

1

H3(x̃)
dx̃ =

x(2H0 + αx)

2H2
0 (H0 + αx)2

, (A 1b)
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and hence∫ 1

0

I2(x) dx =
1

α2H0

[
α−H0 log

(
H0 + α

H0

)]
, (A 2a)∫ 1

0

I3(x) dx =
1

2H2
0 (H0 + α)

, (A 2b)∫ 1

0

xI2(x) dx =
1

2α3H0

[
α(α− 2H0) + 2H2

0 log

(
H0 + α

H0

)]
, (A 2c)∫ 1

0

xI3(x) dx =
1

4α3H2
0

[
α
{
α(H0 + α) + 2H2

0

}
H0 + α

− 2H2
0 log

(
H0 + α

H0

)]
. (A 2d)

Note that for the pinned problem, we set H0 = 1 and leave h∞ unknown, but for the
free-floating problem, we set h∞ = 1 and leave H0 unknown.
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