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ABSTRACT 

An evidence-led scientific case for development of a space-based polar remote sensing platform at geostationary-like 
(GEO-like) altitudes is developed through methods including a data user survey. Whilst a GEO platform provides a near-
static perspective, multiple platforms are required to provide circumferential coverage. Systems for achieving GEO-like 
polar observation likewise require multiple platforms however the perspective is non-stationery. A key choice is between 
designs that provide complete polar view from a single platform at any given instant, and designs where this is obtained 
by compositing partial views from multiple sensors. Users foresee an increased challenge in extracting geophysical 
information from composite images and consider the use of non-composited images advantageous. Users also find the 
placement of apogee over the pole to be preferable to the alternative scenarios. Thus, a clear majority of data users find 
the “Taranis” orbit concept to be better than a critical inclination orbit, due to the improved perspective offered. The 
geophysical products that would benefit from a GEO-like polar platform are mainly estimated from radiances in the 
visible/near infrared and thermal parts of the electromagnetic spectrum, which is consistent with currently proven 
technologies from GEO. Based on the survey results, needs analysis, and current technology proven from GEO, 
scientific and observation requirements are developed along with two instrument concepts with eight and four channels, 
based on Flexible Combined Imager heritage. It is found that an operational system could, mostly likely, be deployed 
from an Ariane 5 ES to a 16-hour orbit, while a proof-of-concept system could be deployed from a Soyuz launch to the 
same orbit. 
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1. INTRODUCTION 

The eighth annual ‘Arctic Report Card’ noted that “the effects of a persistent warming trend that began over 30 years ago 
remain clearly evident” and that this trend is influencing the Arctic’s terrestrial and marine ecosystems [1]. The 
considerable change that has occurred in the Arctic, along with the concept of ‘Arctic Amplification’, and its largely 
anthropogenic origins is widely accepted. However, consensus remains elusive as to the impact of these changes within 
the cryosphere on northern mid-latitudes, the broader global climate, and the mechanism(s) which links them [2–7]. For 
example, in [7], it is suggested that reductions in sea-ice modify atmospheric circulation, with reduced upper-level zonal 
winds at high-latitudes causing increased amplification, resulting in stagnant weather patterns. However, the underlying 
mechanism for this linkage is not detailed and any link remains hypothetical. These uncertainties, along with the 
potentially global impact accentuate the current disparity between the breadth and depth of observations available for the 
tropics and mid-latitudes with the lack of geostationary-equivalent observations over the polar regions.  

A geostationary-like polar observing system will radically improve key polar observations, including resolution of the 
diurnal cycle of phenomena related to, amongst other things, winds, clouds, sea ice, snow cover, and surface temperature 
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of sea, ice and land. Analysis of such phenomena will enable improved weather forecasting and modelling, along with 
environment modelling due to the high-quality continuous observations enabled. It will also significantly improve 
monitoring of ‘Essential Climate Variables’ (ECVs, see [8]), improving understanding of climate change and modelling 
of associated feedback processes.  

Furthermore, rapid environmental change in the Artic is creating new commercial opportunities that in turn produce new 
pressures on the environment. A comprehensive polar observing system could enable monitoring of commercial 
activities and their environmental impact depending on the sensor technology employed. Summer ice melt is also 
creating new pressures on existing infrastructure. The Northwest Passage is becoming more accessible as a summer 
shipping route, which will in turn lead to a general increase in economic activity and growth in surface, air and marine 
traffic. As such, the current commercial Earth Observation market demand will spread to the poles, where currently it 
cannot be fully serviced. 

This paper summarises an on-going study into mission concepts for geostationary-like polar observation systems. The 
paper develops an evidence-led scientific case for further development of a space-based polar remote sensing platform at 
geostationary-like altitudes. The scientific case considers the impact of observation from a highly elliptical orbit on 
meteorological and climatological requirements currently addressed from polar-orbiting instruments. In addition to 
consideration of well-known natural critical-inclination orbits (e.g., Molniya orbits), the paper presents and discusses the 
properties of “Taranis” orbits, which use low-thrust propulsion to maintain a Keplerian orbit away from the natural 
critical-inclination [9–13]. The paper addresses whether Taranis orbits add extra value relative to natural critical-
inclination orbits.  

2. CONTEXT 

Satellite remote sensing is used in all the disciplines of polar science, including, meteorology, climate change, 
stratospheric chemistry, sea ice mapping, sea ice dynamics, monitoring of the great ice sheets, ocean ecosystem studies, 
and studies of the terrestrial biosphere. Some of the most advanced Earth remote sensing missions recently deployed are, 
in fact, dedicated to polar research (such as ICEsat and Cryosat-2). 

A relatively recent survey on the use of remote sensing data for the polar region shows that more researchers using 
remote sensing identify themselves primarily as polar biologists in the context of climate change research, than identify 
themselves with physical science, such as sea ice, climate science, and meteorology (in decreasing order) [14]. The use 
of visible/infrared imagers is most common, with use of passive microwave and active microwave wave being the next 
most frequent. A surprising result is the use of scatterometers, which were not intended for polar research, but play a 
major role in Greenland Ice Sheet studies [15]. 

Presently, useful remote sensing of the polar regions is restricted to spacecraft in near-polar Low Earth Orbits (LEO), 
with altitudes up to ~800 km. LEO platforms provide high-spatial resolution polar observations. However, cloud cover is 
a major limitation for observations in the visible and infrared part of the spectrum when acquisitions are intermittent, as 
with LEO systems. This, coupled with the narrow instrument swath, results in low-temporal resolution polar surface 
coverage from LEO.  

Platforms in Geostationary orbit (GEO), at a mean altitude of 35 786 km over the equator, provide high-temporal 
resolution (e.g., 10 minutes). However, the view zenith angle (VZA) can be ~65° or more at latitudes poleward of 55° 
north or south; see Figure 1. Many quantitative applications degrade rapidly at such VZAs, preventing the GEO 
configuration from giving sufficient observations beyond ~55° latitude. Furthermore, retrieval of certain geophysical 
properties are more challenging in polar regions. An important example is detection and classification of cloud cover 
over snow and ice surfaces, since both cloud tops and snow/ice surfaces are very bright at visible/near-IR wavelengths, 
and, they often have very similar temperatures as measured at mid-IR wavelengths due to frequent polar temperature 
inversions [16]. Discrimination in such “difficult” cases can be improved by exploiting the temporal domain for 
additional information [17]. 
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observation irrespective of cloud cover [21]. An optical/IR mission from GEO-like orbits above polar regions would 
afford additional opportunity mainly due to the high temporal resolution, permitting surface observation between clouds. 
However, assuming the continuity of polar-orbiting microwave sensors, most sea-ice parameters will continue to be 
measured principally from these. An area where the increased surface coverage (between clouds) from an optical/IR 
mission in GEO-like orbit may contribute significantly is observing sea-ice/land-ice/snow albedo. Albedo observation is 
relevant to the regional radiation balance and key to monitoring of both the state of sea-ice melt ponds in summer, and 
the supra-glacial lakes (e.g. over Greenland, revealed via their albedo changes). The melt-pond status of sea-ice in early 
summer is highly predictive of the maximum degree of summer melt [22]. The scientific and operational requirements 
are: the full polar disk imaged at intervals of ≤30 minutes to benefit from moving clear-sky areas between cloud fields; 
spatial resolution across the full polar disk of ≤5 km for general albedo observation (for monitoring of supra-glacial lakes 
≤1 km is required); and, the full polar disk imaged at view zenith angles of <60. It is speculated to be advantageous to 
albedo estimation for the view zenith and azimuth angles to change in time rather than be completely static, implying 
that GEO-like orbits (where this is the case) may be better than a static observational geometry (as with GEO). 

Sea surface temperature (SST) is retrieved from GEO and LEO instruments with relatively low uncertainty (~0.4 K) 
globally [23,24]. In the polar region, these are retrieved from polar orbiting satellites, offering a daily average. However, 
the accuracy of polar-region SSTs is poorer than elsewhere, and varies seasonally [25]. There is a diurnal cycle in SST in 
polar summer, which can be significant, as at other latitudes, i.e., up to 3 K in amplitude under low wind conditions, 
responding to the solar elevation even when daylight is continuous [26]. Combining diurnal and other short-timescale 
variability with the non-continuity of observation from individual platforms, and with inter-sensor biases, progress in 
developing more accurate SSTs in polar regions has been challenging. GEO-like observations would significantly 
support improvement in SST accuracy by: allowing the diurnal cycle under clear-sky conditions to be directly observed 
over complete days from a single sensor; providing multi-sensor matches with polar orbiters to help characterise and 
correct their inter-sensor SST biases; increasing the IR coverage by maximising the surface seen through gaps between 
the (often extensive) polar cloud cover. The scientific and operational requirements are: the full polar disk imaged at 
intervals of <30 minutes to benefit from moving clear-sky areas between cloud fields; spatial resolution across the full 
polar disk of 5 km (~2 km, at the sub-satellite point), to resolve gaps between cloud cover and SST gradients, particular 
near the marginal ice zones; the full polar disk imaged at view zenith angles of <60 (SST accuracy decreases rapidly at 
higher angles because atmospheric effects increasingly mask surface temperature variations); and, brightness temperature 
random (noise) and systematic (bias) uncertainty less than 0.15 K and 0.1 K respectively (1 sigma). 

Land surface temperature (LST) is measured using the thermal infrared part of the spectrum from LEO and GEO. 
Instrument swaths from LEO progressively overlap at increasing latitudes, thus at high latitudes many ground surface 
observations are available each day. However, the swath overlap of near polar orbiting satellites over sub-polar regions is 
often insufficient to construct diurnal temperature curves because of cloud cover [27]. Space-derived high-latitude LST 
is scientifically highly relevant to, for example, ice mass balance over the Greenland ice sheet, and monitoring and 
understanding changes in tundra and permafrost regions, with impacts on high-Arctic ecosystems and greenhouse gas 
release from changing soils. The scientific and operational requirements repeat those for SST. 

Precipitation is usually estimated through active and passive microwave instruments (radar and radiometer) on LEO 
platforms. These technologies not being presently demonstrated from GEO orbits, hence no requirements for GEO-like 
polar orbits for precipitation are developed. 

Aerosol and cloud properties products, such as aerosol optical depth (AOD), are retrieved from LEO (Moderate 
Resolution Imaging Spectroradiometer, MODIS, instrument) and GEO (Spinning Enhanced Visible and Infrared Imager, 
SEVIRI, instrument) platforms. The spatial and temporal resolutions of these aerosol products are 10 km and two 
measurements per day for MODIS, and ~25 km and observation intervals of 15 minutes for SEVIRI. Retrievals of AOD 
and shortwave radiation budget from GEO has significant heritage [28]. Aerosol information such as the AOD is 
challenging to retrieve at high latitudes from LEO platforms due to the high reflectance of snow and ice surfaces, and 
additional problems associated with large solar zenith angles [29]. Therefore, aerosol remote sensing has not been widely 
used in the Arctic region [30]. The scientific and operational requirements are: aerosol optical depth and aerosol class 
above all surfaces (water, ice land and snow); full polar disk imaged at intervals of <30 minutes to benefit from moving 
clear-sky areas between cloud fields, and possibly exploit progression in solar geometry; spatial resolution of image 
across the full polar disk of ≤5 km (giving capability comparable to GEO products); and, full polar disk imaged at view 
zenith angles of <60. 
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Surface solar irradiance (SSI) is measured in the visible and near infrared part of the spectrum; with the amount of solar 
radiation reaching different parts of the Earth a principal driver of global and regional climate. Instruments on GEO 
platforms provide observations at high temporal resolution (i.e. 15 minutes), with a spatial resolution between 3 - 5 km. 
SSI in combination with surface albedo is scientifically important for surface energy balance, including summer surface 
melt of ice and snow, sea-ice dynamics during the melt-pond season, supra-glacial lakes, and the energetics of tundra and 
permafrost zones. The measurement principle is generally to modulate calculated top of atmosphere insolation in the 
light of the reflectance and inferred optical thickness of clouds in the field of view. Because the cloud field may evolve 
rapidly compared to the solar geometry, resolving its evolution is the main driver for temporal resolution. Highly 
accurate SSI products have been derived from the 15 minute imagery from SEVIRI. The scientific and operational 
requirements are: the full polar disk imaged at intervals of ≤15 minutes to give good SSI accuracy for each location; 
spatial resolution across the full polar disk of ≤5 km, giving capability comparable to GEO products; and, full polar disk 
imaged at view zenith angles of <60. 

Tropospheric humidity, and/or radiances sensitivity to tropospheric humidity, is required for NWP, with remotely sensed 
humidity particularly important in regions of limited density of radio-soundings, including polar regions. As the required 
sounding and spectrally resolved technologies have not been demonstrated from GEO, requirements for GEO-like polar 
orbit are not formulated here. However, free tropospheric humidity has been retrieved from GEO platforms using 
infrared observations from SEVIRI [31]. The radiance in one or more “tropospheric water vapour channels” (e.g. at  
6.2 μm) is well established for meteorological diagnostics (nowcasting), mid/upper tropospheric humidity estimation, 
and for atmospheric motion vectors for the upper troposphere from tracking of humidity features. As these are smoother 
than the cloud feature field, coarser spatio-temporal resolution is adequate compared to cloud-feature AMVs. Humidity 
based AMVs are complementary to those based on clouds in that track-able features are generally found at different 
locations, and apply often to different levels in the atmosphere. The requirements are formulated to support interpretation 
of upper/mid tropospheric humidity and humidity-based AMVs. The scientific and operational requirements are: 
observation of mid/upper tropospheric humidity at “water vapour” thermal wavelengths across the full polar disk; full 
polar disk imaged at intervals of ≤1 hour at wavelengths sensitive to mid- and/or upper tropospheric humidity, using 
channels optimised for high latitude atmospheric profiles (perhaps around 6.2 μm); spatial resolution of image across the 
full polar disk of ≤5 km, giving capability comparable to GEO products; and, full polar disk imaged at view zenith 
angles of <60. 

Downward longwave radiation (DLI) affects the surface energy balance, and is important for meteorology particularly in 
relation to the rate of surface cooling at night, development of fogs, et cetera. The drivers of variability of DLI are the 
atmospheric temperature profile, atmospheric humidity profile and the temperature of the lowest cloud base. Over 
decadal time scales, DLI is modulated by secular trends in greenhouse gases and atmospheric temperature. Although DLI 
estimates are developed from SEVIRI, these are less accurate than SSI. Higher accuracy DLI estimates can be gained 
through the use of active sensing, however such instrumentation is not presently demonstrated from GEO. Thus, 
requirements for GEO-like polar orbits are not developed herein, with observation requirements for SSI and tropospheric 
humidity covering the required capability to use a SEVIRI-like imager for DLI estimation. 

Ocean surface vectors wind (OSVW) are crucial to understand and predict the short and longer-term processes that drive 
the environment. OSVW is measured with active microwave scatterometers on LEO platforms, with passive microwave 
radiometers measuring wind speed [32]. However, requirements for OSVW are not fully met by available measurements, 
principally due to the available temporal resolution. Scatterometry or passive radiometry from GEO would in principle 
offer a suitable temporal resolution if the retrieval problem for the viewing geometry is solvable. However, the power 
and antenna size requirements for such a system in GEO would remain a challenge. Thus, requirements for GEO-like 
polar orbits are not developed herein. 

Other areas of interest include active fire products and ocean colour. 
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4. USER SURVEY 

A survey to assess the requirements for and applications of GEO-like observations at polar latitudes was conducted by 
gathering input from potential data users. The questions addressed in the survey were: 

 whether a GEO-like coverage for polar regions would offer significant improvement compared to the current 
capability offered by the constellations of LEO and GEO platforms; 

 how significant is the improvement that the new Taranis orbit offers compared to the potential of the Molniya 
orbit to give geostationary-like coverage; 

 developing an understanding of the user’s needs for polar observations; 
 if the composition of images to gain a single image of the full polar disk would create insurmountable problems.  

The survey consisted of four parts: 

 information about the participants’ applications; 
 their interest on GEO-like radiances/products of the polar regions; 
 their impression on the Taranis orbit and their requirements for the observations from the satellite on the orbit; 
 their opinion on a comparison between Molniya and Taranis orbit.  

The survey attracted 80 participants, predominantly from North America and Europe, with a significant majority of 
participants from countries with territory north of 55° latitude. Latitudes of interest are mainly the north of 55° N or both 
north of 55° N and south of 55° S; few participants were interested only in latitudes south of 55° S. The majority of 
participants (70%) were not current users of observations or products from GEO platforms. This presumably reflects the 
fact that many participants in the survey were correctly targeted as being interested in polar regions, and the relevance of 
GEO observations for such regions is limited. Other participants have global interest, which of course includes interest in 
polar regions. 

Most of the participants (87%) stated they would or possibly would benefit from observations or products currently not 
available. The type of products or observations desired were mainly in the visible and IR, with requirements for 
observations with higher spatial resolution (~1 km) that also sample the diurnal cycle. The four most requested products 
from a GEO-like polar platform were: sea-ice concentration; sea surface temperature; ice surface temperature; and, land 
surface temperature. Similarly, for ice surface temperature, land surface temperature, precipitation, atmospheric motion 
vectors, active fire products and cloud properties, the availability of such products from a GEO-like polar platform 
would lead to adoption of these products by some users who do not currently use them from GEO platforms. However, 
an interesting aspect of the survey is that participants in general do not describe themselves as having a single area of 
application and generally do use multiple products. It was therefore not possible to link the products they would like to 
use from GEO-like orbits to specific application domains. The reality is that real scientific problems often span several 
nominal application domains and could be informed by multiple types of products. 

4.1. Taranis Orbit 

Participants were presented with two mission configurations: 

1. The full polar disk is imaged (at VZA of <60) by a single platform, which is one of three on co-planar 12 hour 
orbits of maximum altitude 40,170 km.† 

2. The full polar disk is imaged (at VZA of <60) by either a single spacecraft (~83% of the time), or by a 
composited view from two platforms (~17% of the time), both on the same orbit as scenario 1.‡ 

For scenario 1, the spacecraft are equally spaced around the orbit and each 1/3 of an orbit a spacecraft exits the 
observation window and another enters, both viewing the polar region with the same, but rotated 180°, VZA distribution, 
as shown in Figure 2; this is the handover point between platforms. 

 
† A detailed description of this configurations can be found at http://youtu.be/Dr-j-6RYFGA  
‡ A detailed description of this configurations can be found at http://youtu.be/s4RgTUnmZ1o  
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NWP and producers of geophysical data slightly less likely to consider the Taranis orbit ‘much better’ than Molniya than 
those in other domains. 

Of the participants who find the Taranis orbit better or marginally better, 27% think that the improvements offered are 
definitely significant for their application and 51% think that the improvements are marginally better. Relatively few see 
no advantage. The most popular contexts are the cryosphere and producers of geophysical data, and the majority of 
categories are of the view there would be a marginal improvement offered by a Taranis system relative to a Molniya 
system. 

5. SCIENTIFIC AND OBSERVATION REQUIREMENTS 

The main objectives of a GEO-like polar system could be focussed on the cryosphere, geophysical data products and 
NWP at polar and sub-polar regions. The relevant observations are radiances in the visible/near infrared and the thermal 
part of the spectrum. Cloud cover is a particular limitation for observations in this part of the spectrum, as discussed in 
[33], and high temporal resolution measurement improves the coverage issues. 

Based on the survey results, needs analysis, and current remote sensing techniques proven from GEO, the user scientific 
objectives are focussed on monitoring the polar and sub-polar regions with time continuity using a visible and infrared 
imager. The scientific requirements are shown in Table 2, with a consolidated set of observation requirements supporting 
these shown in Table 3. Note that the system is, for brevity, described as a “GEO-like polar system”, although the 
latitude range covered at reasonable VZA, in order to be complementary to the GEO system, includes sub-polar latitudes 
(poleward of 55). 

6. ORBIT ANALYSIS 

Three potential orbit configurations are shown in Figure 5, each capable of observing the full polar disk with a VZA of 
<60° but offering different advantages. The orbits configuration scenarios shown in Figure 5 are, 

 three spacecraft on 10 hour, 2000 x 32400 km altitude, high-radiation orbit, no de-orbit required at 
End-of-Life (EoL); 

 three spacecraft on 12 hour, 300 x 40170 km altitude, high-radiation orbit, requires EoL de-orbit; and, 
 four spacecraft on 16 hour, 10000 x 41740 km altitude, low-radiation orbit, requires EoL de-orbit.  

As discussed in Section 4.1 the number of required spacecraft can be reduced by one if data products are retrieved using 
composited images. However, by not requiring the use of composited images an operational GEO-like polar system 
achieves graceful degradation in the event of the loss of a spacecraft. 

 

Table 2. Scientific requirements 

Number Requirement 
SR-1 Satellite-derived Atmospheric Wind Vectors from cloud-feature tracking available over the 

full polar disk with at least hourly temporal resolution. 
SR-2 Satellite-derived surface albedo of ice and snow surfaces with at least monthly resolution. 
SR-3 Satellite-derived sea surface temperature, land surface temperature and ice surface 

temperature with at least hourly resolution under clear skies. 
SR-4 Satellite-derived aerosol optical depth and aerosol class above all surfaces (water, ice land and 

snow). 
SR-5 Satellite-derived surface solar irradiance derived from reflectance imagery with at least 15 

minute sampling (to match the accuracy available from SEVIRI). 
SR-6 Observation of mid/upper tropospheric humidity at “water vapour” thermal wavelengths 

across the target region, suitable also for supporting humidity-based AMVs. 
SR-7 Simultaneous image acquisition with significant overlap of coverage around the times of 

handover between prime platforms, to support rigorous inter-calibration and applications 
benefiting from “dual view”. 
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Generation’s SEVIRI. In the first instrument concept all eight wavelengths in Table 4 are considered, while the second 
eliminates the IR channels to gain further mass savings by removing the cold-optics, resulting in non-compliance with 
OR-1 and OR-6. 

Table 5 presents an approximate mass budget for the two instrument concepts, showing that these instruments, including 
a 20% mass margin, have a nominal mass requirement of 251 kg and 200 kg. To gain further mass reductions would 
require a movement away from FCI heritage, the further reduction of spatial resolution, and/or the use of lightweight 
technologies.  

The thermal loading of the instrument was considered under solar maximum conditions using the ‘Thermal and Orbital 
Propagated Information Calculator’ or TOPIC tool (TOPIC is based on ARTIFIS and is therefore ESARAD compatible) 
[34]. As expected, the thermal loadings on the spacecraft are dominated by the solar flux due to apogee-dwell. Perigee is 
a relatively short period of the orbit and the Earthshine and Albedo are smaller contributions to the total loading. The 
total combined magnitude of the flux is in the region of 2000 W on all surfaces. This loading is similar to that expected 
on a GEO spacecraft per square meter and is not seen as a critical driver for the spacecraft design. It was found however 
that during certain periods, particularly for the winter solstice case, the Nadir surface of the spacecraft, onto which the 
instrument(s) would be mounted, has a significant thermal flux. Hence, during these periods incident flux (that is, stray 
light) is likely to enter the instrument and baffling will need to be designed in-order to mitigate this. 

Table 4. Indication of relationship between instrument spectral channels and level 2 products. 

W
av

el
en

gt
h 

(µ
m

) 

S
ea

 s
u

rf
ac

e 
te

m
p

er
at

u
re

 

Ic
e 

su
rf

ac
e 

te
m

p
er

at
u

re
 

L
an

d
 s

u
rf

ac
es

 
te

m
p

er
at

u
re

 

A
er

os
ol

/c
lo

u
d

 
p

ro
p

er
ti

es
 

C
lo

ud
 p

ro
p

er
ty

 
d

et
ec

ti
on

 

D
ow

nw
ar

d
 

lo
n

gw
av

e 
ra

d
ia

ti
on

 

T
ro

p
os

p
h

er
ic

 
h

u
m

id
it

y 

A
tm

os
p

h
er

ic
 

m
ot

io
n

 v
ec

to
rs

, 
fr

om
 c

lo
ud

 m
ot

io
n 

F
ir

e 
D

et
ec

ti
on
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1.61          
2.25          
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8.7          
10.5          
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Table 5. Instrument concept approximate mass budget. 

Sub-System Option 1: VIS/NIR & IR wavelengths 
(kg) 

Option 2: VIS/NIR wavelengths  
(kg) 

Scan assembly 24 24 
Telescope assembly 35 35 
Focal plane assembly 6 2 
Calibration unit 4 4 
Cooling System 22 0 
Main structure 28 28 
Main baffle 19 19 
Housing 16 16 
Electronics 55 39 
Current best estimate mass 209 167 
Sub-System mass margin (20 %) 42 33 
Nominal Mass 251 200 
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The radiation environment of the instrument was considered for the three different orbit concepts introduced in Figure 5. 
For the 10 and 12 hour orbits, non-radiation hard electronics would require around 3mm of aluminium shielding, for a 
five year mission assuming no self-shielding by the spacecraft. For the 16 hour orbit, this reduces to 0.5 mm, a mass 
factor reduction of six. For rad-hard components, the 10 and 12 hour orbit would require approximately 1 mm of 
aluminium shielding, and the 16 hour orbit none. Assuming a typical 50 cm per side instrument electronics box the 
additional shielding required for non-rad hard parts ranges from 2 – 12 kg, and from 0 – 4 kg from rad-hard parts; an 
increase in instrument mass of up to 5 – 7%, including a 20% sub-system mass margin. 

8. SYSTEM ANALYSIS 

The orbits considered in Figure 5 are ‘non-standard’, therefore launcher user manuals do not detail the mass that can be 
delivered to these orbits. Analysis was conducted using vehicle performance data extracted from the user manuals to 
estimate the delivery mass of an Ariane 5 ES and a Soyuz launcher, both operating from Centre Spatial Guyanais (CSG), 
as representative vehicles. These delivery mass estimates were thereafter used to determine feasible payload masses for 
each orbit scenario configuration, accounting specifically for propellant, fuel tank, support structure, and electric 
propulsion system mass, the payload mass is thereafter estimated as 20, 30, and 50 % of the remaining mass [35]. 

Considering first a multiple spacecraft launch scenario, where all required spacecraft are launched on a single vehicle, it 
is found that a Soyuz cannot provide the required payload mass to any of the orbits considered to enable flight of the 
instrument concepts detailed in Table 5. However, as shown in Figure 6 the Ariane 5 ES can deliver either of the 
instrument concepts detailed in Table 5 to all three orbit scenario configurations detailed in Figure 5, for a five-year 
mission. However, increasing the mission duration to greater than 7.5 years restricts the orbit options to the 16 hour 
orbit. The Ariane 5 ES can deliver either of the instrument concepts detailed in Table 5 to the 16 hour orbit for mission 
durations in excess of 10 years. Note that the FCI on-board the Meteosat Third Generation platforms has a design life of 
8.5 years, with the possibility to extend the platform life to 11 years [36]; similar lifetimes would therefore be expected 
of an operational GEO-like polar system. 

Considering the launch of a single spacecraft on either of the launch vehicles, as shown in Figure 7 it is found that the 
use of either instrument concept detailed in Table 5 for a meaningful mission duration (that is  5 years) would be 
challenging on the 12 hour orbit from a Soyuz vehicle. However, this challenge is lessened if the 10 hour orbit is used. 
The Soyuz vehicle can support either of the instrument concepts detailed in Table 5 on the 16 hour orbit for mission 
durations of 8.5 – 10 years; longer mission durations may be feasible with appropriate system design optimisation. 

9. CONCLUSIONS 

The main objectives of a Geostationary-like (GEO-like) polar platform would be the cryosphere, geophysical data 
products and numerical weather prediction at polar and sub-polar regions. The products that would benefit from a GEO-
like polar platform are mainly estimated from radiances in the visible/near infrared, and the thermal part of the 
electromagnetic spectrum, which is consistent with currently proven technologies from Geostationary orbits. Data users, 
who foresee a potentially increased challenge when continuity of imagery requires use of composite images from 
different platform locations, consider the use of non-composited images advantageous. Users also find the placement of 
apogee over the pole to be useful, and largely do not foresee orbit eccentricity and progression of view zenith angle is a 
barrier to applications. As such, a clear majority of data users find the Taranis orbit concept to be either much or 
marginally better than a critical inclination orbit (e.g. Molniya concept) due to the improved perspective offered. An 
eight or four channel imager, with Flexible Combined Imager heritage, would require a mass allocation of 251 kg or  
200 kg, including mass margin, respectively. The eight-channel concept (reflectance and thermal channels) is compliant 
with all of the identified observation requirements, whereas the four-channel concept (reflectance channels only) is 
compliant with only a subset of these. A 16 hour, low-radiation orbit offers significant mission lifetimes; however, such 
an orbit requires an additional spacecraft when compared against 10 and 12 hour orbits; four verses three. An operational 
system, offering >10 years’ continuous polar coverage in eight spectral channels could, mostly likely, be deployed from 
an Ariane 5 ES launch to the 16-hour orbit. A proof-of-concept single spacecraft mission could be deployed from a 
Soyuz launch to a similar orbit, offering >10 years’ polar coverage in four spectral channels, or more than five years of 
coverage in eight spectral channels.  
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