
A Fast Secure Dot Product Protocol with Application to
Privacy Preserving Association Rule Mining

Changyu Dong1 and Liqun Chen2

1 Department of Computer and Information Sciences,University of Strathclyde
changyu.dong@strath.ac.uk

2 Hewlett-Packard Laboratories
liqun.chen@hp.com

Abstract. Data mining often causes privacy concerns. To ease the concerns, var-
ious privacy preserving data mining techniques have been proposed. However,
those techniques are often too computationally intensive to be deployed in prac-
tice. Efficiency becomes a major challenge in privacy preserving data mining. In
this paper we present an efficient secure dot product protocol and show its ap-
plication in privacy preserving association rule mining, one of the most widely
used data mining techniques. The protocol is orders of magnitude faster than pre-
vious protocols because it employs mostly cheap cryptographic operations, e.g.
hashing and modular multiplication. The performance has been further improved
by parallelization. We implemented the protocol and tested the performance. The
test result shows that on moderate commodity hardware, the dot product of two
vectors of size 1 million can be computed within 1 minute. As a comparison, the
currently most widely used protocol needs about 1 hour and 23 minutes.

1 Introduction

Data mining, which generally means the process of discovering interesting knowledge
from large amounts of data, has become an indispensable part of scientific research,
business analytics, and government decision making. Privacy has always been a concern
over data mining. Regulations on data privacy become tighter and tighter. Legislation
includes various US privacy laws (HIPAA, COPPA, GLB, FRC, etc.), European Union
Data Protection Directive, and more specific national privacy regulations. Since the
groundbreaking work [4, 21], there have been a lot of research in privacy preserving data
mining (PPDM). However, privacy is not cost free. The overhead of privacy preserving
protocols is often too high when a large amount of data needs to be protected. Therefore,
how to make protocols secure and also efficient becomes a major challenge to PPDM.

The focus of this paper is association rule mining [2], which discovers associa-
tion patterns from different sets of data and this is one of the most popular and pow-
erful data mining methods. There have been several privacy preserving solutions for
association rule mining. According to [27], those solutions can be divided into two
approaches: randomization-based and cryptography-based. In the randomization-based
approach [10, 24, 32] , there is a centralized server who aggregates data from many
clients and discovers association rules. To protect privacy, data owners (the clients) use

some statistical methods to distort the data before sending it to the server. In the dis-
tortion procedure, noise is added to the data in order to mask the values of the records
while still allow the distribution of the aggregation data to be recovered. The goal is
to prevent the server from learning the original data while still be able to discover the
rules. However, it has been shown in [20, 17] that in many cases, the original data can
be accurately estimated from the randomized data using techniques based on Spec-
tral Filtering, Principal Component Analysis and Bayes estimate. In recent years, the
cryptography-based approach becomes very popular. This is because cryptography pro-
vides well-defined models for privacy and also a large toolset. In this approach, data
is usually split among multiple parties horizontally [19, 25] or vertically [28, 29]. In
general, associate rule mining on vertically partitioned data is much more computation-
ally intensive than on horizontally partitioned data because little data summarization
can be done locally. Therefore performance is a more acute problem when dealing with
vertically partitioned data.

As we will see in section 2, the core of the algorithm for association rule mining
on vertically partitioned data is a secure dot product protocol. Therefore the key to
make privacy preserving association rule mining practical is to improve the efficiency
of the underlying dot product protocol. Many secure dot product protocols have been
developed in the past [8, 9, 28, 18, 1, 13, 11, 29, 5, 6, 26]. However, [8, 28, 18] have been
shown to be insecure or incorrect, [9] requires an additional third party, and the others
require at least O(n) modular exponentiation operations, where n is the size of the
input vectors. Modular exponentiation is a costly operation, thus those protocols are
very inefficient and cannot be used in real applications that handle large datasets.

The main contribution of this paper is a very efficient secure dot product proto-
col, which can significantly accelerate privacy preserving association rule mining. Our
analysis and implementation show that our dot product protocol is orders of magnitude
faster than previous ones. The efficiency comes from the fact that the protocol relies
mostly on cheap cryptographic operations, i.e. hashing, modular multiplication and bit
operations. The efficiency can be further increased by parallelization. It is worth men-
tioning that in addition to association rule mining, secure dot product has also been
shown to be an important building block in many other PPDM algorithms such as naive
Bayes classification [30], finding K-Nearest Neighbors (KNN) [31] and building deci-
sion trees [9]. Therefore our protocol can also be used to boost the performance of those
PPDM tasks. We also provide a informal security analysis. We have proved the protocol
to be secure in the semi-honest model in terms of multiparty secure computation [14].
For space reason, the proof is omitted here and will appear in the full version.

The paper is organized as follows: in Section 2, we briefly review the privacy pre-
serving Apriori algorithm for association rule mining on vertically partitioned data;
in Section 3, we describe our secure dot product protocol and the underlying crypto-
graphic building blocks; in Section 4, we report the performance measurements based
on the prototype we have implemented, and compare it against the most widely used
secure dot product protocol; in section 5, we conclude the paper and discuss possible
future work.

Algorithm 1: Privacy Preserving Apriori Algorithm [28]
1 L1 ={large 1-itemsets};
2 for k = 2;Lk−1 6= ∅; k ++ do
3 Ck =apriori-gen(Lk−1);
4 for each candidate c ∈ Ck do
5 if all the attributes in c are entirely at P1 or P2 then
6 that party independently calculates c.count;
7 else
8 let P1 have attributes 1 to l and P2 have the remaining m attributes
9 construct A on P1’s side and B on P2’s side where A =

∏l
i=1 Xi and

B =
∏l+m

i=l+1 Xi;
10 compute c.count = A ·B
11 end
12 Lk = Lk ∪ c|c.count ≥ minsup;
13 end
14 end
15 Answer=∪kLk;

2 Privacy Preserving Association Rule Mining

Association rules show attribute values that appear frequently together in a given dataset.
The problem can be formalized as follows [2]: let I = {i1, i2, . . . , im} be a set of items.
LetD be a set of transactions and T be a transaction. Each transaction T is a set of items
such that T ⊆ I . We say T contains X if X ⊆ T . An association rule is of the form
X ⇒ Y where X ⊂ I , Y ⊂ I and X ∩ Y = ∅. A rule X ⇒ Y holds in the transaction
set D with confidence c if c% of transactions in D that contain X also contain Y . A
rule X ⇒ Y has support s in the transaction set D if s% transactions in D contain
X ∪ Y . The goal of association rule mining is to find all rules having high support and
confidence. One classic algorithm for association rule mining is the Apriori algorithm
[3]. The Apriori algorithm can find all frequent itemsets, i.e. itemsets that appear in the
transaction set at least minsup times, where minsup is a threashold. After all frequent
itemsets have been found, association rules can be generated straightforwardly.

The computation model we consider is two parties each holds part of the transaction
set that is vertically partitioned, i.e. one party holds some attributes and the other party
holds the rest attributes. In [28], a secure algorithm for finding association rules on
vertically partitioned data was proposed. The algorithm (see Algorithm 1) is a straight-
forward extension of the Apriori algorithm. For each attribute, the party holding it can
create a binary vector whose length is the size of the transaction set: the absence or
presence of the attribute can be represented as 0 and 1. As shown in [28], we can reduce
privacy preserving association rule mining to securely computing the dot products of
the binary vectors. Candidate itemsets can be generated as in the Apriori algorithm.In
the simplest case where the candidate itemset has only two attributes, for example an
attributeX1 held by P1 andX2 held by P2, the two parties can compute the dot product
of the corresponding vectors X1 ·X2 =

∑n
i=1 X1[i] ·X2[i]. Then the dot product is

the support count, i.e. how many times the itemset appears in the transaction set, and is
tested against a predefined threshold minsup. If the dot product is greater or equal to
the threashold, then the candidate itemset is a frequent itemset. This approach can be
easily extended to itemsets that have more attributes. Most of the steps in Algorithm 1
can be done locally. The only step that needs to be computed securely between the two
parties is step 10, where a dot product needs to be calculated. Being the only crypto-
graphic step, step 10 is the most time consuming part of the algorithm, and its running
time dominates the total running time of the algorithm. Therefore improving the per-
formance of the secure dot product protocol is key to improving the performance of the
entire mining algorithm.

3 The Secure Dot Product Protocol

To make privacy preserving association rule mining efficient, we need an efficient se-
cure dot product protocol. In this section, we present such a protocol and analyze
its security. The protocol is built on two well-defined cryptographic primitives: the
Goldwasser–Micali Encryption and the Oblivious Bloom Intersection.

3.1 Cryptographic Building Blocks

Goldwasser–Micali Encryption The Goldwasser–Micali (GM) encryption is a seman-
tically secure encryption scheme [15]. The algorithms are as follows:

– Key generation algorithm G: it takes a security parameter k, and generates two large
prime numbers p and q, computes n = pq and a quadratic non-residue x for which
the Jacobi symbol is 1. The public key pk is (x, n), and the secret key sk is (p, q).

– Encryption algorithm E : to encrypt a bit b ∈ {0, 1}, it takes b and the public key
(x, n) as input, and outputs the ciphertext c = y2xb mod n, where y is randomly
chosen from Z∗n.

– Decryption algorithm D: it takes a ciphertext c and the private key as input, and
outputs the message b: b = 0 if the Legendre symbol (cp) = 1, b = 1 otherwise.

There are two reasons why we use the GM encryption in our protocol: it is efficient
for our purpose and it is homomorphic. The inputs to our protocols are bit vectors
and they must be encrypted bit-by-bit in the protocol. Notice that the GM encryption
and decryption operations involve only modular multiplications and Legendre symbol
computation. Both are very efficient and the computational costs are on the same order
of symmetric key operations. This is in contrast to the public key encryption schemes
required by the other secure dot product protocols. Those encryption schemes require
modular exponentiations, which is usually thousands of time slower. Therefore using
the GM encryption makes our protocol much more efficient. The GM encryption is
known to be homomorphic and allows computation to be carried out on ciphertexts.
More specifically, for two ciphertexts c1 = E(pk, b1) and c2 = E(pk, b2), their product
c1c2 is a ciphertext of b1⊕b2, where⊕ is the bitwise exclusive or (XOR) operator. This
property will be used in our protocol to allow a party to blindly randomize ciphertexts
generated by the other party.

Oblivious Bloom Intersection Oblivious Bloom Intersection (OBI) [7] is an efficient
and scalable private set intersection protocol. A private set intersection protocol is a
protocol between two parties, a server and a client. Each party has a private set as input.
The goal of the protocol is that the client learns the intersection of the two input sets,
but nothing more about the server’s set, and the server learns nothing. In Section 3.3,
we will see how to convert the computation of the dot product of two binary vectors into
a set intersection problem. Previously, the private set intersection protocols are equally,
or even more, costly as secure dot product protocols. Therefore PSI based secure dot
product protocols have no advantage in terms of performance. This situation is changed
by the recently proposed OBI protocol. The OBI protocol adapts a very different ap-
proach for computing set intersections. It mainly bases on efficient hash operations.
Therefore it is significantly faster than previous private set intersection protocols. In
addition, the protocol can also be parallelized easily, which means performance can be
further improved by parallelization. The protocol is secure in the semi-honest model
and an enhanced version is secure in the malicious model.

Briefly, the semi-honest OBI protocol works as follows: the client has a set C and
the server has a set S. Without loss of generality, we assume the two sets have the same
size, i.e. |C| = |S| = w. The protocol uses two data structures: the Bloom filter and
the garbled Bloom filter. Both data structures can encode sets and allow membership
queries. The two parties agree on a security parameter k and chooses k independent
uniform hash functions. The hash functions are used here to build and query the filters.
The client encodes its set into a Bloom filter, which is a bit vector. The server encodes
its set into a garbled Bloom filter, which is a vector of k-bit strings. The size of the
Bloom filter (and also the garbled Bloom filter) depends on the security parameter k
and set cardinality w. More precisely, the filter size is k ·w · log2 e. The client then runs
an oblivious transfer protocol with the server. The oblivious transfer protocol can be
implemented efficiently with hash functions. The number of hash operations required
by the oblivious transfer protocol is linear in the filter size. The result of the oblivious
transfer protocol is that the server learns nothing and the client obtains another garbled
Bloom filter that encodes the set intersection C ∩ S. The client can query all elements
in C against this garbled Bloom filter to find the intersection.

We refer the readers to [7] for more details regarding OBI. We will show in Section
3.3 that by combining OBI with the GM encryption, we can get a much more efficient
secure dot product protocol.

3.2 Security Model

We study the problem within the general framework of Secure Multiparty Computation.
Briefly, there are multiple parties each has a private input, they engage in a distributed
computation of a function such that in the end of the computation, no more informa-
tion is revealed to a participant in the computation than what can be inferred from that
participants input and output [14]. Several security models have been defined in this
framework. In this paper, we consider the semi-honest model [14]. In this model, ad-
versaries are honest-but-curious, i.e. they will following the protocol specification but
try to get more information about honest party’s input. Although this is a weak model,
it is appropriate in many real world scenarios where the parties are not totally untrusted.

Besides, semi-honest protocols can be upgraded to full security against malicious ad-
versaries using a generic technique [14].

3.3 The Protocol

P1’s input: A binary vector X1 of size n and density at most d.
P2’s input: A binary vector X2 of size n and density at most d.
Other input: A security parameter k, the GM Encryption scheme (G, E ,D).
Phase 1: Sets initialization

1.1 P1 generates a random key pair (pk, sk) for the GM encryption, and sends the public
key to P2.

1.2 P1 then encrypts X1 bit by bit using the public key, and sends the ciphertext
(E(pk,X1[1]), ..., E(pk,X1[n])) as an ordered list to P2.

1.3 P2 generates a vector of n distinct random numbers R, then creates an empty set T2,
for 1 ≤ j ≤ n, if X2[j] = 1, T2 = T2 ∪R[j].

1.4 P2 generates a set C that has n elements {c1, ..., cn}. For 1 ≤ j ≤ n, cj =
(R[j], E(pk,X1[j]) · E(pk, 0)).

1.5 P2 chooses a random permutation θ, and sends C′ = θ(C) to P1.
1.6 P1 creates an empty set T1, then for each 1 ≤ i ≤ n and c′i = (ui, vi) in C′, if
D(sk, vi) = 1, then T1 = T1 ∪ ui.

Phase 2: Output Dot Product

2.1 P1 uses the set T1 and P2 uses the set T2 as inputs. They engage in an execution of the
OBI protocol. P1 plays the role of the OBI client and gets T1 ∩ T2, P2 plays the role of
the OBI server and gets nothing.

2.2 P1 counts the element in the intersection and outputs d = |T1 ∩ T2|, which is the dot
product X1 ·X2.

Fig. 1: The Secure Dot Product Protocol

A method [16] that converts the binary vector dot product problem into computing
the cardinality of set intersection is as follows: given two binary vectors X1 and X2

both of cardinality n, we can construct two sets Si (i ∈ {1, 2}) such that j is an element
of Si if the Xi[j] = 1, i.e. Si = {j | Xi[j] = 1}. Then the dot product X1 ·X2 =
|S1 ∩ S2|. In the light of this, in [16] the authors proposed an approximate secure dot
product protocol that works by estimating the cardinality of the set intersection.

Our protocol is also based on this set intersection cardinality idea, but can com-
pute the exact intersection cardinality rather than just an approximation. The protocol is
shown in Fig. 1. We now explain the rationale behind the design and discuss the security
informally. Our insight is that we can build a secure binary vector dot product protocol
on top of a private set intersection protocol. It seems trivial: let the two parties convert

their private vectors into sets as described above, then run a private set intersection pro-
tocol between them, the protocol outputs the set intersection S1 ∩S2 thus |S1 ∩S2| can
be obtained as a by-product. This solution, however is flawed. The main problem is that
it leaks more information than desired. In fact, the party who obtains the intersection
as the output of the private set intersection protocol learns not only the dot product, but
also some bits in the other party’s vector: for any j in the intersection, the jth-bit of the
other party’s vector must be 1. To prevent this, in our protocol, we do not use the sets
S1 and S2 directly, but map them into T1 and T2 such that the following two properties
hold: (1) |T1 ∩ T2| = |S1 ∩ S2|, (2) at the end of the protocol P1 obtains T1 ∩ T2, from
which it can obtain |S1 ∩ S2|, but no other information.

The first property ensures the correctness of our protocol. To see why this property
holds, observe that in step 1.3, P2 maps each 1 ≤ j ≤ n to a random number R[j]. The
mapping is used by both parties to map Si to Ti: for each j ∈ Si, or equivalently for
each j such that Xi[j] = 1, its counterpart R[j] is in Ti. Thus |T1 ∩ T2| = |S1 ∩ S2|
is guaranteed. The difficulty here is how to let P1 correctly generate T1. For P2, it can
easily generate T2 because it knows the mapping. However, to maintain privacy, P1 is
not allowed to know the mapping. In order to allow P1 to generate T1, P2 creates a
labelled permutation of the vector R (step 1.4, 1.5). For each R[j], the label assigned
to it is a ciphertext of X1[j]. In step 1.6, P1 can decrypt the label, if it encrypts 1, then
P1 knows the corresponding vector element should be put into T1.

The second property ensures the privacy of our protocol. It is easy to see why P2

gets no more information: the only message P2 gets in phase 1 is the encrypted version
of X1, then by the security of the GM encryption, P2 gets no information about X1.
Phase 2 is essentially a PSI execution and P2 plays the role of the PSI server, thus by
the security of the PSI protocol, it learns nothing. For P1, it receives C ′ in step 1.6 and
each c′i is a tuple (ui, vi) = (R[j], E(pk,X1[j]) · E(pk, 0)). C ′ allows P1 to generate
T1 but no more than that. Since C ′ = θ(C) and θ is a random permutation, the order of
an element in the set i does not leak any information. Also ui = R[j] for some j is a
random number generated independently of j, and the mapping from j to R[j] is known
only byP2, thus ui leaks no information. On the other hand vi = E(pk,X1[j])·E(pk, 0),
so vi incorporates randomness generated by P2, therefore P1 cannot link it back to the
ciphertext E(pk,X1[j]) generated by itself. D(sk, vi) gives only 1 bit information, i.e.
there exists a j such that Xi[j] = 1. That is exactly what P1 should know. At the end
of phase 1, P1 holds a set T1 which it knows is a equivalent of S1 but cannot link the
elements in T1 back to elements in S1: any element in T1 can be any element in S1 with
equal likelihood. A consequence is that the output in step 2.1 T1 ∩T2 gives P1 no more
information about S1 ∩ S2 other than the cardinality of the intersection.

The protocol in Fig. 1 has only one output: P1 gets the dot product and P2 gets
nothing. In some applications, it is preferable to have two outputs such that P1 gets
a number a and P2 gets a number b and a + b is the dot product. This can be done
by executing the protocol in Fig. 1 twice and let the parties switch roles in the two
executions. Suppose Alice has a vector Y1 and Bob has a vector Y2, both are of size n.
Bob first splits Y2 randomly into two n-bit vectors Y3 and Y4, such that Y2 = Y3+Y4.
In the first round, Alice plays the role of P1 and uses Y1 as her input. Bob plays the
role of P2 and uses Y3 as input. Alice gets an output a after the execution. Then in the

second round, Alice plays the role of P2 and still uses Y1 as her input. Bob plays the
role of P1 and uses Y4 as his input. Then Bob receives an output b. The outputs satisfy
that a + b = Y1 · Y2. To see that, observe that a = Y1 · Y3 and b = Y1 · Y4, so
a+ b = Y1 · (Y3 + Y4) = Y1 · Y2.

3.4 Efficiency
From the description of the protocol in Fig. 1 we can see that the computational and
communicational complexities of phase 1 are both O(n), where n is the size of the
vector. Phase 2 is a single execution of the OBI protocol. Therefore the computational
and communicational complexities of this phase are also O(n).

More specifically: in phase 1 the total computational cost is 3n modular multipli-
cations plus computing n Legendre symbols, in phase 2 the total computational cost
is 2d · k · n(1 + log2 e) hash operations, where d is the density of the vectors, k is
the security parameter (e.g. 80 or 128) and e is the natural logarithm constant. As a
comparison, the protocol in [13], which is based on Paillier homomorphic encryption,
requires n modular exponentiations and n modular multiplications. At first glance it
seems that our protocol is not as efficient as the protocol in [13]. However a closer anal-
ysis shows the opposite. This is because modular exponentiation, required by [13], is
much more expensive than the operations requires by our protocol. To better illustrate
the difference, we show the running time of the cryptographic operations at 80-bit se-
curity in Table 1. The modulus used is 1024-bit. The time was measured on a Mac Pro
with 2.4 GHz Intel Xeon CPUs. For the cheap operations, the time shown is the aver-
age of 1,000,000 executions and for modular exponentiation, the time is the average of
1,000 executions. We can see the difference is 3 orders of magnitude. At higher security
levels, the difference is even bigger.

sha-1 hash mod mul. Legendre symbol mod exp.
0.2× 10−6 0.8× 10−6 5.4× 10−6 3.7× 10−3

Table 1: Average running time of cryptographic operations at 80-bit security (in sec-
onds)

Communication wise, our protocol in phase 1 transfers 2n element in group Z∗N and
in phase 2 transfers 2 · d · k · n · log2 e k-bit strings. On the other hand, the communi-
cation cost of the protocol in [13] is n element in group Z∗N2 . Our protocol consumes
more bandwidth than the protocol in [13]. The bandwidth consumption of our protocol
depends on d, the density of the vector. In the worst case where d = 1, the bandwidth
consumed by our protocol is about 10 times as much as the protocol in [13], but when
d = 0.1, the bandwidth consumption of our protocol is only twice that of the protocol in
[13]. In real applications the density is often small thus the difference is not significant.

4 Implementation and Performance

We implemented our protocol in Figure 1 and measured the performance. The protocol
was implemented in C. The implementation uses OpenSSL [22] and GMP [12] for the

cryptographic operations. We used the Oblivious Bloom Intersection as the underlying
PSI protocol. We obtained the source code of the OBI protocol, which is also in C, and
incorporated it in our implementation. As a reference, we also implemented Goethals
et al’s protocol [13] in C. Goethals et al’s protocol relies on additive homomorphic
encryption and we use the Paillier public key scheme [23] as the building block of
the protocol. We tested the protocols with 80 bits symmetric keys and1024 bits public
keys. The experiments were conducted on two Mac computers. P1 ran on a Macbook
Pro laptop with an Intel 2720QM quad-core 2.2 GHz CPU and 16 GB RAM. P2 ran
on a Mac Pro with 2 Intel E5645 6-core 2.4GHz CPUs and 32 GB RAM. The two
computers were connected by 1000M Ethernet. The two parties communicate through
TCP socket. In all experiments, we use randomly generated bit vectors as inputs. We use
synthesized data rather than real data because of the following two reasons: firstly the
performance is not affected by the nature of the input data; secondly the performance
of our protocol varies with the density of the vectors and it is hard to demonstrate the
worst case performance with real data.

We first show the overall running time of the protocols with different vector sizes.
The performance of our protocol depends on density of the vectors. In this experiment
we measured the worst case performance by setting the density of the vectors used in
our protocol to 1. In the experiment, each party uses one thread for computation and
another one for network communication. The result is shown in table 2. As we can see
in the table, our protocol is more than 20 times faster than Goethals et al’s protocol.

Vector size 1,000 10,000 100,000 1,000,000
Our Protocol 0.27 2.25 22.01 238.37
Goethals et al 5.06 49.58 509 5039

Table 2: Total Running Time Comparison (in Seconds)

In real world applications, the density of the vectors is less than 1 and our protocol
can be more efficient. The performance of our protocol has been further improved by
exploiting parallelization. Oblivious Bloom Intersection, the underlying PSI protocol,
is highly parallel. The implementation of the Oblivious Bloom Intersection protocol
has a parallel mode which allows the program to utilize all available CPU cores and
distribute the computation among them. The total running time can be significantly
shortened if the program is running on multi-core systems. In the next experiment, we
measured the performance of our protocol running in non-parallel and parallel modes
with different densities. In the experiment, we set the vector size n = 1, 000, 000 and
varied the density from 0.1 to 1. The result is shown in Figure 2. As we can see in the
figure, the parallel mode does increase the performance significantly. The total running
time in the non-parallel mode is 1.8× – 4.2× of that in the parallel mode. On the other
hand, the total running time in each mode increases linearly with the vector density.
When the density is 0.1, the total running time is 18.9 and 34.1 seconds in the parallel
and non-parallel modes respectively, while when the density is 1 the numbers become
57 and 238 seconds. To compare, we also plot the total running time of Goethals et

al’s protocol when the vector size is set to 5, 000 and 50, 000. The running time of
Goethals et al’s protocol is not affected by the vector density. As we can see, the total
running time of our protocol in all cases is less than that of the Goethals et al’s protocol
with n = 50, 000. The total running time of Goethals et al’s protocol is linear in n.
That means our protocol is at least 20 times faster. Our protocol is more than100 times
faster than Goethals et al’s when running in the non-parallel mode and when the vector
density is 0.1, and is 200 times faster when running in the parallel mode and with a
vector density below 0.2.

!"# !"$!"% !"& !"' !"(!") !"* !"+ #
!

'!

#!!

#'!

$!!

$'!

%!!

%'!

,-./012

3
04
-
56
7
-
8
9

:;<5=<:1:8:>?5=@<@>>->54:A-56.B#?!!!?!!!9

:;<5=<:1:8:>?5.:.!=@<@>>->56.B#?!!!?!!!9

C:-1D@>/5-15@>"56.B'!!!!9

C:-1D@>/5-15@>"56.B'!!!9

Fig. 2: Running Time in Non-Parallel and Parallel Modes with Various Vector Density

We also measured the bandwidth consumption. In the experiment, we set the vector
size n = 1, 000, 000 and varied the density. The bandwidth consumption of Goethals et
al’s protocol with n = 1, 000, 000 was measured for comparison. The result is shown in
Figure 3. Goethals et al’s protocol consumes about 266 MB bandwidth. The bandwidth
consumption of our protocol is about 1.9× and 9.5× of that when the density is 0.1 and
1 respectively. The number is quite close to our estimation in section 3.4. If the network
connection is very slow, then Goethals et al’s protocol can be faster than ours because
the bottleneck is the network speed. Given the above measurements, we can roughly
estimate when to switch. For example, if the vector size is 1,000,000 and density is 1,
then when the network speed is less than 3.8 Mbps, Goethals et al’s protocol should
be used; if the density becomes 0.1, then Goethals et al’s protocol becomes faster only
when the network speed is less than 0.4 Mbps.

5 Conclusion

In this paper we investigated how to accelerate association rule mining on big datasets
in a privacy preserving way. To this end, we developed a provably secure and very effi-
cient dot product protocol. The protocol is based on the Goldwasser–Micali Encryption
and Oblivious Bloom Intersection. The security of the protocol can be proved in the
semi-honest model. By avoiding expensive cryptographic operations such as modular
exponentiation, the performance of our protocol is much better than previous ones. We

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

Density

B
a
n

d
w

id
th

 (
M

B
)

Our protocol

Goethals et al.

Fig. 3: Bandwidth Consumption

implemented the protocol and compared the performance against the currently most
widely used secure dot product protocol. The results show that our protocol is orders of
magnitude faster.

As future work, we would like to extend the protocol to multiple parties. We would
also like to investigate how to improve the efficiency of other PPDM tasks. As we
mentioned, our protocol can be used as a sub-protocol in many other PPDM tasks. We
need also efficient constructions for other building blocks in the PPDM tasks. Another
future direction is to implement the protocol in frameworks such as MapReduce, so
that we can take advantage of the processing power provided by large scale distributed
parallel computing, e.g. cloud computing.

Acknowledgements. We would like to thank the anonymous reviewers. Changyu Dong
is supported by a Science Faculty Starter Grant from the University of Strathclyde.

References

1. Agrawal, R., Evfimievski, A.V., Srikant, R.: Information sharing across private databases.
In: SIGMOD Conference. (2003) 86–97

2. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in
large databases. In: SIGMOD Conference. (1993) 207–216

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:
VLDB. (1994) 487–499

4. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: SIGMOD Conference. (2000)
439–450

5. Amirbekyan, A., Estivill-Castro, V.: A new efficient privacy-preserving scalar product pro-
tocol. In: AusDM. (2007) 209–214

6. Cristofaro, E.D., Gasti, P., Tsudik, G.: Fast and private computation of cardinality of set
intersection and union. In: CANS. (2012) 218–231

7. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: An efficient and
scalable protocol. In: ACM Conference on Computer and Communications Security. (2013)

8. Du, W., Atallah, M.J.: Privacy-preserving cooperative statistical analysis. In: ACSAC. (2001)
102–110

9. Du, W., Zhan, Z.: Building decision tree classifier on private data. In: Proceedings of the
IEEE international conference on Privacy, security and data mining - Volume 14. CRPIT ’14,
Darlinghurst, Australia, Australia, Australian Computer Society, Inc. (2002) 1–8

10. Evfimievski, A.V., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of asso-
ciation rules. In: KDD. (2002) 217–228

11. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In:
EUROCRYPT. (2004) 1–19

12. GMP. http://gmplib.org/
13. Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On private scalar product computation

for privacy-preserving data mining. In: ICISC. (2004) 104–120
14. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge

University Press (2004)
15. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping

secret all partial information. In: STOC. (1982) 365–377
16. He, X., Vaidya, J., Shafiq, B., Adam, N.R., Terzi, E., Grandison, T.: Efficient privacy-

preserving link discovery. In: PAKDD. (2009) 16–27
17. Huang, Z., Du, W., Chen, B.: Deriving private information from randomized data. In:

SIGMOD Conference. (2005) 37–48
18. Ioannidis, I., Grama, A., Atallah, M.J.: A secure protocol for computing dot-products in

clustered and distributed environments. In: ICPP. (2002) 379–384
19. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on

horizontally partitioned data. In: DMKD. (2002)
20. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of

random data perturbation techniques. In: ICDM. (2003) 99–106
21. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: CRYPTO. (2000) 36–54
22. OpenSSL. http://www.openssl.org/
23. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:

EUROCRYPT. (1999) 223–238
24. Rizvi, S., Haritsa, J.R.: Maintaining data privacy in association rule mining. In: VLDB.

(2002) 682–693
25. Tassa, T.: Secure mining of association rules in horizontally distributed databases. IEEE

Transactions on Knowledge and Data Engineering 99(PrePrints) (2013) 1
26. Tassa, T., Jarrous, A., Ben-Ya’akov, Y.: Oblivious evaluation of multivariate polynomials. J.

Mathematical Cryptology 7(1) (2013) 1–29
27. Vaidya, J., Clifton, C., Zhu, Y.: Privacy Preserving Data Mining. Advances in Information

Security. Springer (2006)
28. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned

data. In: KDD. (2002) 639–644
29. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to association rule

mining. Journal of Computer Security 13(4) (2005) 593–622
30. Vaidya, J., Kantarcioglu, M., Clifton, C.: Privacy-preserving naı̈ve bayes classification.

VLDB J. 17(4) (2008) 879–898
31. Wong, W.K., Cheung, D.W.L., Kao, B., Mamoulis, N.: Secure knn computation on encrypted

databases. In: SIGMOD Conference. (2009) 139–152
32. Zhang, N., Wang, S., Zhao, W.: A new scheme on privacy preserving association rule mining.

In: PKDD. (2004) 484–495

