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Summary

The steady flow of a slowly varying rivulet with prescribed flux in the azimuthal
direction round a large stationary horizontal cylinder subject to a prescribed uniform
azimuthal surface shear stress is investigated. In particular, we focus on the case
where the volume flux is downwards but the shear stress is upwards, for which there
is always a solution corresponding to a rivulet flowing down at least part of one side
of the cylinder. We consider both a rivulet with constant non-zero contact angle
but slowly varying width (i.e. de-pinned contact lines) and a rivulet with constant
width but slowly varying contact angle (i.e. pinned contact lines), and show that they
have qualitatively different behaviour. When shear is present, a rivulet with constant
non-zero contact angle can never run all the way from the top to the bottom of the
cylinder, and so we consider the scenario in which an infinitely wide two-dimensional
film of uniform thickness covers part of the upper half of the cylinder and “breaks”
into a single rivulet with constant non-zero contact angle. In contrast, a sufficiently
narrow rivulet with constant width can run all the way from the top to the bottom
of the cylinder, whereas a wide rivulet can do so only if its contact lines de-pin, and
so we consider the scenario in which the contact lines of a wide rivulet de-pin on the
lower half of the cylinder.

1. Introduction

Thin-film and/or rivulet flow on the inside or outside of a cylinder subject to a pressure
and/or shear stress arising from an external airflow occurs in many practical contexts, such
as in falling-film flow over horizontal-tube evaporators found in refrigeration, desalination
and petroleum refining processes (see, for example, Ribatski and Jacobi (1) and Ruan et al.
(2)), in the flow of oil films inside aeroengines (see, for example, Gorse et al. (3) and Farrall
et al. (4)), and in the rain–wind-induced vibrations of the cables of cable-stayed bridges
(see, for example, Hikami and Shiraishi (5) and Robertson et al. (6)).

The pioneering work on two-dimensional thin-film flow on the outside of a stationary
horizontal cylinder was performed by Nusselt (7, 8), and the corresponding analysis of
flow on both the outside and the inside of a rotating horizontal cylinder was carried out by
Moffatt (9). Three-dimensional rivulet flow on the outside of a stationary horizontal cylinder
was considered by Duffy and Moffatt (10), who interpreted their solution for the locally
unidirectional draining of a gravity-driven rivulet with constant non-zero contact angle on
a slowly varying substrate as the flow in the azimuthal direction of a slowly varying rivulet
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on a large horizontal cylinder. In particular, they found that the rivulet becomes wide with
finite thickness near the top of the cylinder and deep with finite width near the bottom
of the cylinder. Recently, the present authors (Paterson et al. (11)) extended the analysis
of Duffy and Moffatt (10) to consider the possible pinning, de-pinning and re-pinning of
the rivulet. They considered both a rivulet with constant contact angle but variable width
(i.e. de-pinned contact lines) and a rivulet with constant width but variable contact angle
(i.e. pinned contact lines). In particular, they found that a rivulet with constant width can
flow from the top to the bottom of the cylinder only if it is sufficiently narrow, and that a
wider rivulet can do so only if its contact lines de-pin. In practice, pinned contact lines will
occur on sufficiently rough substrates and de-pinned contact lines on sufficiently smooth
ones. A closely related problem was recently considered by Leslie et al. (12), who studied
a “full ring” of fluid with constant non-zero contact angle that extends all the way round a
rotating cylinder and, in particular, for flow on the outside of the cylinder, determined the
maximum mass of fluid that can be supported against gravity by the rotation in such a full
ring.

The present work is concerned with rivulet flow on a stationary horizontal cylinder, but
now subject to an azimuthal surface shear stress due to an external airflow, and so, in
addition to the works discussed above, perhaps the most closely related previous study is
that by Villegas-Dı́az et al. (13), who investigated two-dimensional thin-film flow on the
inside of a rotating horizontal cylinder subject to a uniform azimuthal surface shear stress.
They found that there is a maximum volume flux such that the film covers the entire
cylinder and that this maximum flux is four times greater in the case of rotation with no
shear stress than in the case of shear stress with no rotation. Discontinuous solutions with
shocks (that is, one or more jumps in the film thickness) are possible both when the shear
stress and the rotation are in the same or in opposite directions and, in particular, when
they are in opposite directions then these shocks can occur anywhere on the cylinder. To
gain further insight into the feasibility of these shock solutions in practice, Villegas-Dı́az et
al. (14) extended the standard lubrication model to include surface tension and higher-order
gravity effects, and offered analytical and numerical results to support the claim that these
shock solutions are physically relevant. Another closely related study is that by Sullivan
et al. (15), who used the approach of Duffy and Moffatt (10) to investigate the flow of a
rivulet of perfectly wetting fluid (i.e. a rivulet with zero contact angle) on the lower half
of a stationary horizontal cylinder subject to a uniform azimuthal surface shear stress, and
found that the rivulet becomes wide and shallow near the middle of the cylinder and deep
with finite width near the bottom of the cylinder. There have been several other studies
of various two-dimensional thin-film and three-dimensional rivulet flows on non-cylindrical
substrates subject to a surface shear stress arising from an external airflow (see, for example,
the work by King and Tuck (16), King et al. (17), Chou and Wu (18), Wilson et al. (19),
Myers and Charpin (20), Myers et al. (21), Wilson and Duffy (22), Shuaib et al. (23),
Pascal and D’Alessio (24), Cuminato et al. (25), Ueno and Farzaneh (26), Wilson et al.
(27), Sullivan et al. (28) and Yatim et al. (29)). In addition, there have been a number
of experimental studies of rivulet flow (see, for example, Nakagwa and Scott (30), Schmuki
and Laso (31), Nakagwa (32), Mertens et al. (33), Le Grand-Piteira et al. (34), Birnir et
al. (35), Luo et al. (36, 37) and Couvreur and Daerr (38)), and of the effect of an external
airflow on a droplet on a substrate (see, for example, Seevaratnam et al. (39) and Fan et
al. (40)). An overview of previous work is given by Paterson (41, Chapter 1).
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Fig. 1 Sketch of a thin rivulet with semi-width a, contact angle β and volume flux Q flowing on a planar
substrate inclined at an angle α to the horizontal subject to a prescribed uniform longitudinal surface shear
stress τ .

In the present work we use the solution for the steady unidirectional flow of a thin rivulet
on an inclined planar substrate to investigate the flow in the azimuthal direction of a slowly
varying rivulet on the outside of a large stationary horizontal cylinder subject to a prescribed
uniform azimuthal surface shear stress. In particular, in the situation in which the shear
stress acts in opposition to gravity, we obtain complete descriptions of the flow of a rivulet
with constant non-zero contact angle but slowly varying width in which an infinitely wide
sheet of fluid covers part of the upper half of the cylinder and “breaks” into a single rivulet,
and the flow of a rivulet with constant width but slowly varying contact angle in which the
contact lines of a wide rivulet de-pin on the lower half of the cylinder.

2. Unidirectional Flow on an Inclined Planar Substrate

2.1 Problem Formulation

Consider the steady unidirectional flow of a thin symmetric rivulet with semi-width a and
volume flux Q on a planar substrate inclined at an angle α (0 ≤ α < 2π) to the horizontal
subject to a prescribed uniform longitudinal surface shear stress τ . We assume that the
fluid is Newtonian with constant viscosity µ, density ρ and coefficient of surface tension
γ, and choose Cartesian coordinates Oxyz with the x axis down the line of greatest slope
for 0 < α < π or up the line of greatest slope for π < α < 2π, the y axis horizontal,
and the z axis normal to the substrate z = 0, such that τ > 0 corresponds to a shear
stress in the positive x direction, as sketched in Fig. 1. In dimensionless variables the
velocity u = u(y, z)i and the pressure (relative to its ambient value) p = p(y, z) satisfy
the familiar mass-conservation and Navier–Stokes equations subject to the normal stress
balance p = −h′′, the tangential stress balance uz = τ and the kinematic condition at the
free surface z = h(y), the no-slip condition u = 0 at the substrate z = 0, and the condition
of zero thickness at the contact lines (i.e. h(±a) = 0), where a dash denotes differentiation
with respect to argument. The contact angle is denoted by β = ∓h′(±a) (≥ 0) and the
maximum thickness of the rivulet, which always occurs at y = 0, is denoted by hm = h(0).
We have non-dimensionalised y and a with ℓ, z, h and hm with δℓ, u with U = δ2ρgℓ2/µ,
Q with δℓ2U = δ3ρgℓ4/µ, p with δρgℓ, and τ with δ2ρgℓ, where g is the magnitude of
gravitational acceleration, ℓ = (γ/ρg)1/2 is the capillary length, and δ is the transverse
aspect ratio. There is some freedom regarding the definition of δ. Provided it is non-zero,
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we could use the prescribed value of the contact angle, denoted by β̄, to define δ by choosing
δ = β̄, corresponding to taking β̄ = 1 without loss of generality. Alternatively, provided
it is non-zero, we could use the prescribed value of the flux, denoted by Q̄, to define δ
by choosing δ = (µQ̄/ρgℓ4)1/3, corresponding to taking Q̄ = 1 without loss of generality.
However, in order to keep the subsequent presentation as general as possible, we leave δ
unspecified. At leading order in the limit of small transverse aspect ratio δ → 0 (i.e. for a
thin rivulet) the governing equations are readily solved to yield the pressure

p = cos α(h − z) − h′′ (2.1)

(which includes both hydrostatic and surface-tension terms) and the velocity

u =
sinα

2
(2h − z)z + τz (2.2)

(which includes both gravity-driven and surface-shear-stress-driven terms) so that the local
flux ū = ū(y) is given by

ū =

∫ h

0

u dz =
sin α

3
h3 +

τ

2
h2. (2.3)

We may differentiate (2.1) with respect to y and use the fact that py = 0 to obtain a third
order ordinary differential equation for the free surface, namely

(h′′ − h cos α)′ = 0, (2.4)

which is to be solved subject to the contact-line conditions h(±a) = 0 and ∓h′(±a) = β (≥
0).

2.2 The General Case of Non-Zero Contact Angle β > 0

In the general case of non-zero contact angle β > 0 we may solve (2.4) subject to the
contact-line conditions to obtain the free surface shape

h = β ×
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(2.5)

so that the maximum thickness of the rivulet is given by

hm =
β

m
×
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(2.6)
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and the volume flux is given by

Q =

∫ a

−a

ū dy =
β3 sinα

9m4
f(ma) +

β2τ

2m3
g(ma), (2.7)

where we have written m = | cos α|1/2. The functions f = f(ma) and g = g(ma) appearing
in (2.7) are defined by

f(ma) =
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2
(2.8)

and

g(ma) =
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(2.9)

Note that the function f(ma) was first obtained by Duffy and Moffatt (10) (their equation
(14) and denoted as F (B)) and the function g(ma) was first obtained by Sullivan et al.
(15) (their equation (2.16)). For 0 ≤ α < π/2 and 3π/2 < α < 2π both f and g are
positive, monotonically increasing functions, increasing from zero at ma = 0 to infinity
as ma → ∞, while their derivatives f ′ and g′ are also positive, monotonically increasing
functions, increasing from zero at ma = 0 to 6 and 2, respectively, as ma → ∞. Figure 2(a)
shows plots of f , g, f ′, and g′ as functions of ma for 0 ≤ α < π/2 and 3π/2 < α < 2π. For
π/2 < α < 3π/2 both f and g have multiple branches, but we restrict our attention to the
branches in the interval 0 ≤ ma < π since these are the only ones for which the solution
is physically realisable (specifically, for which h > 0 everywhere in the interval y = −a
to y = +a). Then f and g and their derivatives f ′ and g′ are all positive, monotonically
increasing functions, increasing from zero at ma = 0 to infinity as ma → π−. Figure 2(b)
shows plots of f , g, f ′, and g′ as functions of ma/π for π/2 < α < 3π/2. For future reference
it is useful to note that in the limit ma → 0+

f(ma) =
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and
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Fig. 2 Plots of f and g (solid lines), defined by (2.8) and (2.9), respectively, together with their derivatives
f ′ and g′ (dashed lines) as (a) functions of ma for 0 ≤ α < π/2 and 3π/2 < α < 2π when 0 ≤ ma < ∞,
and (b) functions of ma/π for π/2 < α < 3π/2 when 0 ≤ ma < π.

In the limit ma → ∞ for 0 ≤ α < π/2 and 3π/2 < α < 2π

f(ma) = 6ma − 11 + O(ma exp (−2ma)) (2.12)

and

g(ma) = 2ma − 3 + O(ma exp (−2ma)). (2.13)

In the limit ma → π− for π/2 < α < 3π/2

f(ma) =
15π

(π − ma)3
+ O(π − ma)−1 (2.14)

and

g(ma) =
3π

(π − ma)2
+ O(1). (2.15)

2.3 The Special Case of Zero Contact Angle β = 0

In the special case of zero contact angle β = 0 we recover the solution for a rivulet of
perfectly wetting fluid analysed by Sullivan et al. (15), namely that there is no solution for
0 ≤ α ≤ π/2 and 3π/2 ≤ α < 2π, but

a =
π

m
, h =

hm

2
(1 + cos my) , Q =

π

24m
(5 sin αhm + 9τ) h2

m for
π

2
< α <

3π

2
.

(2.16)
Note that, as Wilson and Duffy (42, Section 11) showed, this solution can be recovered
from the solution in the general case β > 0 described in Section 2.2 in the limit β → 0.
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Fig. 3 Sketches of the five different types of cross-sectional flow pattern, denoted as type I to type V,
when β > 0 at α = π/2, for which the rivulet has a parabolic profile. Regions with u > 0 (i.e. downwards
flow for 0 < α < π) are shaded and regions with u < 0 are unshaded. The locations of the maximum and
minimum velocities are marked with dots. When β = 0 and/or α 6= π/2 the rivulet profile is not parabolic;
however, the flow patterns in these cases are qualitatively the same as those shown here.



8 C. Paterson et al.

2.4 Cross-Sectional Flow Patterns

All of the possible cross-sectional flow patterns (i.e. the patterns of the longitudinal flow,
u, through a transverse cross section of the rivulet) that can occur within the rivulet may
be categorised into five types which, following the notation used by Wilson and Duffy (22)
and Sullivan et al. (15), we denote as type I to type V. The flow patterns for a rivulet
on a substrate inclined at an angle α for 0 < α < π with shear stress τ and volume flux
Q are equivalent to those for π < α < 2π with shear stress −τ and volume flux −Q, and
hence, without loss of generality, in the rest of this subsection we restrict our attention to
the interval 0 < α < π.

Figure 3 shows sketches of these five different types of flow pattern when β > 0 at α = π/2,
for which the rivulet has a parabolic profile. Regions with u > 0 (i.e. downwards flow for
0 < α < π) are shaded and regions with u < 0 are unshaded. When β = 0 and/or α 6= π/2
the rivulet profile is not parabolic; however, the flow patterns in these cases are qualitatively
the same as those shown in Fig. 3. The locations of the maximum and minimum velocities
are marked with dots, and expressions for these points for each flow type are the same as
those given by Sullivan et al. (15) and hence are not reproduced here for brevity. When
τ > 0 the shear stress acts down the substrate in co-operation with gravity and so the
velocity is downwards throughout the rivulet (type-I flow), but when τ < 0 the shear stress
acts up the substrate in opposition to gravity, and the velocity is always upwards near
the contact lines (types-II–V flow). The velocity within the rivulet is zero on the curve
z = 2(h + τ/ sin α); with z = h = hm this shows, in particular, that type-III flow occurs
when hm = −2τ/ sin α. For flow types II–IV this curve of zero velocity meets the substrate
when y = ±b, and for flow type II it meets the free surface when y = ±c, where b is given
by

b =
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β sinα
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π

2
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(2.17)

and c is given by (2.17) with τ replaced by 2τ .

3. Locally Unidirectional Flow Round a Horizontal Cylinder

In the remainder of the present work we use the steady unidirectional flow solutions (2.5)–
(2.9) and (2.16) to describe the steady, locally unidirectional flow of a slowly varying rivulet
with prescribed flux Q = Q̄ on a slowly varying substrate, specifically the flow in the
azimuthal direction round a large stationary horizontal cylinder, subject to a prescribed
uniform azimuthal surface shear stress τ . Note that here and henceforth “slowly varying”
means that the longitudinal (i.e. azimuthal) aspect ratio ǫ = ℓ/R, where R is the radius
of the cylinder, satisfies ǫ ≪ δ, and the appropriately defined reduced Reynolds number,
Re∗ = δ4ργℓ2/µ2R, satisfies Re∗ ≪ 1, so that ǫ/δ → 0 and Re∗ → 0 in the limit ǫ → 0.
The angle α is now interpreted as the local slope of the cylinder, with α = 0 at the top,
increasing down the right-hand side to α = π at the bottom, and up the left-hand side to
α = 2π at the top again. Since a solution with shear stress τ and volume flux Q̄ on one side
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of the cylinder is equivalent to a solution with shear stress −τ and volume flux −Q̄ on the
other side, in the remainder of the present work we will, without loss of generality, restrict
our attention to the case of positive prescribed flux, Q̄ > 0 (corresponding to a clockwise
flux in the figures shown later).

In practice, when a rivulet flows round a cylinder it is possible that either its contact
lines are de-pinned and free to move such that its contact angle remains constant but its
width varies, or its contact lines are pinned such that its width remains constant but its
contact angle varies. We will therefore consider both of these scenarios in the present work
and, in particular, we will show that they have qualitatively different behaviour. Firstly, in
Section 4 we describe a rivulet with constant non-zero contact angle β = β̄ > 0 but slowly
varying semi-width a = a(α). Imposing the condition of prescribed flux Q = Q̄ means that
(2.7) is a transcendental equation for a which is solved asymptotically in various physically
relevant limits and numerically. Secondly, in Section 5 we describe a rivulet with constant
semi-width a = ā but slowly varying contact angle β = β(α) (≥ 0). Imposing the condition
of prescribed flux Q = Q̄ means that (2.7) is a cubic polynomial equation for β which may
be solved exactly. We analyse this solution and, in particular, explore its behaviour in
various physically relevant limits.

Figure 4 shows a representative selection of rivulet solutions for various values of τ plotted
as functions of the scaled angle α/π (0 ≤ α < 2π) when Q = Q̄ = 1. Expressed in another
way, Fig. 4 shows contours of the expression for the shear stress τ given by (2.7) in the
α/π–a, α/π–β and α/π–hm planes, as appropriate, when Q = Q̄ = 1. Specifically, Figs 4(a)
and 4(b) show the semi-width a and maximum thickness hm for a rivulet with constant non-
zero contact angle β = β̄ = 1, Figs 4(c) and 4(d) show the contact angle β and maximum
thickness hm for a “narrow” rivulet with constant semi-width a = ā = 2 (< π), and Figs
4(e) and 4(f) show the contact angle β and maximum thickness hm for a “wide” rivulet
with constant semi-width a = ā = 5 (> π), all plotted as functions of α/π for various
values of τ . In particular, Fig. 4 shows that neither in the case of constant non-zero contact
angle nor in the case of constant width does the rivulet have top-to-bottom symmetry (i.e.
symmetry about α = π/2 and α = 3π/2). More fundamentally, Fig. 4 shows that for any
given value of α there can be zero, one or two solutions for a or β and hm, and that there
are various kinds of rivulet solution, some of which exist only in a restricted range of values
of α. In particular, in Figs 4(a) and 4(b) there is no physically realisable rivulet solution
with β = β̄ = 1 when τ = −0.5 in the interval 0 ≤ α ≤ α∞, where α∞/π ≃ 0.2264. This
behaviour (which occurs for all τ < 0) will be discussed in greater detail in Section 4, where
it will be interpreted as the presence of an infinitely wide sheet of fluid. Similarly, in Figs
4(e) and 4(f) there are no physically realisable rivulet solutions with a = ā = 5 for all
values of τ shown in the interval αdepin < α < 2π − αdepin, where αdepin/π ≃ 0.6292 and
2 − αdepin/π ≃ 1.3708. This behaviour (which occurs for all values of τ when ā > π) will
be discussed in greater detail in Section 5, where it will be interpreted as the occurrence of
contact-line de-pinning. Comparison of Figs 4(c) and 4(d) with Figs 4(e) and 4(f) shows
that, just as Paterson et al. (11) recently found in the special case of no shear stress, τ = 0,
unlike a rivulet with constant non-zero contact angle, a “narrow” rivulet with constant
semi-width a = ā < π behaves qualitatively differently from a “wide” rivulet with constant
semi-width a = ā > π. Figure 4 also shows the existence of a positive critical shear stress,
τc (> 0), such that “full-ring” solutions (i.e. solutions for which a, β and hm are continuous,
finite and non-negative for all 0 ≤ α < 2π and −a ≤ y ≤ a), analogous to those studied by
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Fig. 4 Plots of (a) the semi-width a, (c,e) the contact angle β, and (b,d,f) the maximum thickness hm

as functions of α/π (0 ≤ α < 2π) when Q = Q̄ = 1 for (a,b) τ = −0.5, 0, 0.5, 1, τc ≃ 1.1614, 1.5
for a rivulet with constant contact angle β = β̄ = 1, (c,d) τ = −0.5, 0, 0.5, 1, τc ≃ 1.2741, 1.5 for a
“narrow” rivulet with constant semi-width a = ā = 2 (< π), and (e,f) τ = −0.5, 0, 0.5, 1, 1.5 for a “wide”
rivulet with constant semi-width a = ā = 5 (> π). In (a) the vertical dashed lines indicate the values of
α/π at which a → ∞, and in (b) the dots denote the corresponding values of hm which lie on the curves
hm = β̄/

√
cos α for 0 ≤ α < π/2 and 3π/2 < α < 2π, which are denoted with dotted lines. In (e) and (f)

the vertical dashed lines correspond to the values of α/π at which β = 0, namely α/π = αdepin/π ≃ 0.6292
and α/π = 2 − αdepin/π ≃ 1.3708.
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Leslie et al. (12) in the case of flow on a rotating cylinder in the absence of surface shear
stress, exist when τ ≥ τc but not when τ < τc.

In the remainder of the present work we focus on just one of the kinds of solution shown
in Fig. 4, namely the case of non-positive shear stress, τ ≤ 0, in which there is always a
solution corresponding to a rivulet flowing down at least part of the right-hand side of the
cylinder (where the shear stress acts in opposition to gravity, but it is still possible to sustain
a positive flux), but never any solutions corresponding to flow on the left-hand side of the
cylinder (where the shear stress acts in co-operation with gravity, making it impossible to
sustain a positive flux).

4. A Rivulet with Constant Non-Zero Contact Angle β = β̄ > 0

In this section we describe the steady, locally unidirectional flow of a slowly varying rivulet
with constant non-zero contact angle β = β̄ > 0 but slowly varying semi-width a = a(α) on
the right-hand side of a large horizontal cylinder subject to a non-positive uniform azimuthal
surface shear stress τ (≤ 0) acting in opposition to gravity.

In the special case of no shear, τ = 0, the rivulet becomes infinitely wide at the top of
the cylinder (i.e. a → ∞ as α → 0+) and it runs all the way from the top α = 0 to the
bottom α = π of the cylinder; however, as we saw in Fig. 4(a), in the general case of strictly
negative shear, τ < 0, the rivulet becomes infinitely wide at the station α = α∞ away from
the top of the cylinder (i.e. a → ∞ as α → α+

∞) and there is no physically realisable rivulet
solution in the interval 0 ≤ α ≤ α∞. The value of α∞ (0 ≤ α∞ < π/2) is determined by
the leading order balance in (2.7) when a → ∞, namely

2β̄ sin α + 3mτ = 0 (4.1)

evaluated at α = α∞, and is therefore given by

α∞ = cos−1

(

√

81τ4 + 64β̄4 − 9τ2

8β̄2

)

, (4.2)

while the corresponding value of the maximum thickness hm = hm∞ is given by

hm∞ =
β̄√

cos α∞

=

[

√

81τ4 + 64β̄4 + 9τ2
]

1

2

2
√

2
. (4.3)

Figure 5 shows plots of α∞/π and hm∞ as functions of −τ (≥ 0) when β̄ = 1, and shows
that both α∞ and hm∞ are monotonically increasing functions of −τ . In particular, in
the limit of weak shear, τ → 0−, the rivulet becomes infinitely wide near the top of the
cylinder and correspondingly its maximum thickness approaches the finite value β̄ from
above according to

α∞ ∼ − 3τ

2β̄
→ 0+ and hm∞ ∼ β̄ +

9τ2

16β̄
→ β̄+, (4.4)

while in the limit of strong shear, τ → −∞, the rivulet becomes infinitely wide near
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−τ

α∞/π

(a) −τ

hm∞

(b)

Fig. 5 Plots of (a) the scaled azimuthal angle at which the rivulet becomes infinitely wide, α∞/π, given
by (4.2), and (b) the corresponding maximum thickness, hm∞, given by (4.3), as functions of −τ (≥ 0)
when β̄ = 1. The dotted curves show the asymptotic results in the limits of weak shear, −τ → 0+, and
strong shear, −τ → ∞, given by (4.4) and (4.5), respectively.

Q̄

α∞

α

Free surface

Substrate

τ < 0

g

Fig. 6 Sketch of the scenario considered in Section 4, namely an infinitely wide two-dimensional film of
uniform thickness H = H(α) covers the cylinder from α = 0 to α = α∞, where it “breaks” into a single
rivulet with prescribed flux Q = Q̄, constant contact angle β = β̄ (> 0) and slowly varying semi-width a
that runs from α = α∞ to α = π.
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the middle of the cylinder and correspondingly its maximum thickness becomes infinite
according to

α∞ ∼ π

2
− 4β̄2

9τ2
→ π

2

−

and hm∞ ∼ −3τ

2
→ ∞. (4.5)

Since there is no physically realisable rivulet solution in the interval 0 ≤ α ≤ α∞, an
alternative description of the behaviour is required there. Perhaps the most natural scenario
is that an infinitely wide two-dimensional film of uniform thickness H = H(α) covers the
cylinder from α = 0 to α = α∞, where it “breaks” into a single rivulet with prescribed
flux Q = Q̄ that runs from α = α∞ to the bottom of the cylinder α = π. This scenario is
sketched in Fig. 6 and is the one that we will consider here. The appropriate form of H,
determined by setting ū = 0 and h = H in (2.3), is

H = − 3τ

2 sin α
(> 0). (4.6)

In particular, (4.6) shows that the film becomes deep near the top of the cylinder according
to

H ∼ − 3τ

2α
→ ∞ (4.7)

as α → 0+, and that it approaches the finite thickness hm∞ from above according to

H ∼ hm∞ − 2β̄2

3τ
(α∞ − α) → h+

m∞ (4.8)

as α → α−
∞. Similarly, (2.7) shows that the rivulet becomes infinitely wide according to

a ∼
4
[

3(cos α∞)
3

2 Q̄ − β̄2τ
]

β̄
√

81τ4 + 64β̄4 (α − α∞)
→ ∞ (4.9)

and (2.6) shows that it approaches the finite maximum thickness hm∞ from above according
to

hm ∼ hm∞ +
hm∞ tan α∞

2
(α − α∞) → h+

m∞ (4.10)

as α → α+
∞, so that the infinitely wide film in 0 ≤ α ≤ α∞ and the finite-width rivulet in

α∞ < α ≤ π join continuously (but not smoothly) at the station α = α∞. In the special
case of no shear, τ = 0, the rivulet becomes deep with finite semi-width π near the bottom
of the cylinder according to

a ∼ π −
(

5β̄3(π − α)

3Q̄

)

1

3

→ π− and hm ∼
(

24Q̄

5(π − α)

)

1

3

→ ∞ (4.11)

as α → π−, while in the general case of strictly negative shear, τ < 0, the rivulet again
becomes deep with finite semi-width π near the bottom of the cylinder, but now according
to

a ∼ π +
10β̄(π − α)

9τ
→ π− and hm ∼ − 9τ

5(π − α)
→ ∞ (4.12)

as α → π−.
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α/π

a

τ = 0

τ = −4

π√
− cosα

(1, π)

(a)
α/π

hm

τ = 0

τ = −4
β̄√

cosα

(b)

α/π

a

Q̄ = 0.01

Q̄ = 1000

(1, π)

α∞/π ≃ 0.2264

π√
− cosα

(c)
α/π

hm

Q̄ = 1000

Q̄ = 0.01

β̄√
cosα

(d)

Fig. 7 Plots of (a,c) the semi-width a and (b,d) the maximum thickness hm as functions of the scaled
angle α/π when β̄ = 1 for (a,b) τ = −4, −3, . . . , 0 when Q̄ = 1 and (c,d) Q̄ = 0.01, 0.1, . . . , 1000 when
τ = −0.5. In (a) and (c) the vertical dashed lines indicate the values of α/π = α∞/π, given by (4.2), at
which a → ∞, and in (b) and (d) the dots denote the corresponding values of hm which lie on the curve
hm = β̄/

√
cos α for 0 ≤ α < π/2, which is denoted with a dotted line. In (a) and (c) the dotted lines denote

the solution a = π/
√
− cos α for π/2 < α ≤ π attained at leading order in the asymptotic limits τ → −∞

and Q̄ → ∞, respectively.
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y

h(y)

α = π/8α = π/4

α = 7π/8

Fig. 8 Cross-sectional free surface profiles of the film H and the rivulet h(y) when β̄ = 1, τ = −0.5 and
Q̄ = 1 at α = π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8. Note that in this case π/8 < α∞ ≃ 0.7112 < π/4,
and so the profile in the case α = π/8 is that of an infinitely wide film of uniform thickness H ≃ 1.9598
rather than that of a finite-width rivulet.

The behaviour of the present solution is illustrated in Fig. 7, which shows plots of the
semi-width a and the maximum thickness hm as functions of α/π when β̄ = 1 for (a,b)
various values of τ (≤ 0) when Q̄ = 1 and for (c,d) various values of Q̄ when τ = −0.5.

In Subsection 4.1 we present examples of free surface profiles of the film and the rivulet,
and in Subsections 4.2–4.5 we describe the behaviour in the limits of weak shear, τ → 0−,
strong shear, τ → −∞, small flux, Q̄ → 0+, and large flux, Q̄ → ∞, respectively.

4.1 Free Surface Profiles

Figure 8 shows examples of cross-sectional free-surface profiles of the film and the rivulet in
the case β̄ = 1, τ = −0.5 and Q̄ = 1. For these parameter values we obtain α∞ ≃ 0.7112,
and so the profile shown for α = π/8 < α∞ ≃ 0.7112 is simply a horizontal line that
corresponds to an infinitely wide film of uniform thickness H ≃ 1.9598.

4.2 The Limit of Weak Shear (τ → 0−)

In the limit of weak shear, τ → 0−, α∞ → 0+ according to (4.4) and the rivulet behaves
according to

a ∼ aτ0 −
9g(maτ0)τ

2β̄ sin αf ′(maτ0)
→ a+

τ0 and hm ∼ β̄

m
tanh

(maτ0

2

)

= O(1) (4.13)

on the upper half of the cylinder,

a ∼
(

105Q̄

4β̄3

)

1

4

− 7τ

8β̄
→

(

105Q̄

4β̄3

)

1

4
+

and hm ∼
(

105Q̄β̄

64

)

1

4

− 7τ

16
→

(

105Q̄β̄

64

)

1

4
+

(4.14)
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at α = π/2, and according to (4.13) with “tanh” replaced by “tan” in the expression for
hm on the lower half of the cylinder, where aτ0 is the semi-width in the special case of no
shear, that is, the form of a when τ = 0.

4.3 The Limit of Strong Shear (τ → −∞)

In the limit of strong shear, τ → −∞, α∞ → π/2− according to (4.5) and the film becomes
deep according to H = −3τ/(2 sin α) → ∞ on the upper half of the cylinder, while the
rivulet becomes wide and deep according to

a ∼ − 7τ

2β̄
→ ∞ and hm ∼ −7τ

4
→ ∞ (4.15)

at α = π/2, and deep with finite width according to

a ∼ π

m
+

10β̄ sinα

9m2τ
→ π

m

−

and hm ∼ − 9τ

5 sin α
→ ∞ (4.16)

on the lower half of the cylinder. Note that a changes from O(τ) to O(1) in a narrow
transition layer of width O(τ−2) near α = π/2+.

4.4 The Limit of Small Flux (Q̄ → 0+)

In the limit of small flux, Q̄ → 0+, the rivulet behaves according to

a ∼ aQ0+
18m3Q̄

β̄2
[

2β̄ sin αf ′(maQ0) + 9mτg′(maQ0)
] → a+

Q0 and hm ∼ β̄

m
tanh

(maQ0

2

)

= O(1)

(4.17)
on the upper half of the cylinder for α∞ < α < π/2,

a ∼ − 7τ

2β
− 30Q̄

49τ3
→ − 7τ

2β̄

+

and hm ∼ −7τ

4
− 15β̄Q̄

49τ3
→ −7τ

4

+

(4.18)

at α = π/2, and according to (4.17) with “tanh” replaced by “tan” in the expression for
hm on the lower half of the cylinder, where aQ0 is the semi-width in the special case of zero
flux, that is, the form of a when Q̄ = 0.

4.5 The Limit of Large Flux (Q̄ → ∞)

In the limit of large flux, Q̄ → ∞, the rivulet becomes wide with finite thickness according
to

a ∼ 3m3Q̄

β̄2
[

2β̄ sinα + 3mτ
] → ∞ and hm ∼ β̄

m
tanh

(

3m4Q̄

2β̄2
[

2β̄ sin α + 3mτ
]

)

→ β̄

m

−

(4.19)
on the upper half of the cylinder for α∞ < α < π/2, wide and deep according to

a ∼
(

105Q̄

4β̄3

)

1

4

− 7τ

8β̄
→ ∞ and hm ∼

(

105Q̄β̄

64

)

1

4

− 7τ

16
→ ∞ (4.20)
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at α = π/2, and deep with finite width according to

a ∼ π

m
−

(

5πβ̄3 sin α

3m7Q̄

)

1

3

→ π

m

−

and hm ∼
(

24Q̄m

5π sin α

)

1

3

→ ∞ (4.21)

on the lower half of the cylinder; note that a and hm in (4.21) are independent of τ to the
orders given. Note also that a changes from O(Q̄) to O(1) and hm changes from O(1) to
O(Q̄1/3) in a narrow transition layer of width O(Q̄−1/2) near α = π/2.

5. A Rivulet with Constant Semi-Width a = ā

In this section we describe the steady, locally unidirectional flow of a slowly varying rivulet
with constant semi-width a = ā but slowly varying contact angle β = β(α) (≥ 0) on the
right-hand side of a large horizontal cylinder subject to a non-positive uniform azimuthal
surface shear stress τ (≤ 0) acting in opposition to gravity.

Unlike in the case of constant non-zero contact angle described in Section 4 in which
the behaviour is qualitatively the same for all values of the contact angle, the behaviour is
qualitatively different for a narrow rivulet with a = ā < π, in the marginal case a = ā = π,
and for a wide rivulet with a = ā > π, and hence in Subsections 5.1–5.3 we describe the
behaviour in each of these three cases separately. In Subsection 5.4 we present examples of
free surface profiles of the rivulet, and in Subsections 5.5–5.8 we describe the behaviour in
the limits of weak shear, τ → 0−, strong shear, τ → −∞, small flux, Q̄ → 0+, and large
flux, Q̄ → ∞, respectively.

5.1 A Narrow Rivulet with a = ā < π

For a narrow rivulet with a = ā < π for all values of Q̄ and τ (≤ 0) there is a slowly varying
rivulet that runs all the way from the top of the cylinder α = 0 to the bottom of the cylinder
α = π, and its contact angle β has a single minimum on the lower half of the cylinder and
its maximum thickness hm has a single minimum on the upper half of the cylinder. This
scenario is sketched in Fig. 9(a).

5.1.1 The Special Case of No Shear (τ = 0)

In the special case of no shear, τ = 0, the real positive solution of (2.7) for the contact angle
β is

β =

(

9Q̄m4

sin αf(mā)

)

1

3

, (5.1)

and the maximum thickness hm is given by (2.6) with β given by (5.1). The rivulet becomes
deep near the top and the bottom of the cylinder according to

β ∼
(

9Q̄

f(ā)α

)

1

3

→ ∞ and hm ∼
(

9Q̄

f(ā)α

)

1

3

tanh
( ā

2

)

→ ∞ (5.2)

as α → 0+ and

β ∼
(

9Q̄

f(ā)(π − α)

)

1

3

→ ∞ and hm ∼
(

9Q̄

f(ā)(π − α)

)

1

3

tan
( ā

2

)

→ ∞ (5.3)
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Q̄ Q̄

Q̄ Q̄

g

α α

αdepin

Free surface Substrate

τ < 0 τ < 0

(b)(a)

Fig. 9 Sketch of the scenario considered in Section 5, namely a rivulet with prescribed flux Q̄ and (when
not de-pinned with zero contact angle β = β̄ = 0 but slowly varying semi-width a = π/m) constant semi-
width a = ā but slowly varying contact angle β that runs from α = 0 to α = π, in the cases (a) a = ā < π,
in which the rivulet is never de-pinned, and (b) a = ā > π, in which the rivulet is de-pinned and has zero
contact angle in the interval αdepin ≤ α ≤ π.

as α → π−; also β and hm take the O(1) values

β =

(

105Q̄

4ā4

)

1

3

and hm =

(

105Q̄

32ā

)

1

3

(5.4)

at α = π/2. In the limit of a very narrow rivulet, ā → 0+, the rivulet becomes narrow and
deep everywhere according to

β ∼
(

105Q̄

4ā4 sinα

)

1

3

→ ∞ and hm ∼
(

105Q̄

32ā sinα

)

1

3

→ ∞. (5.5)

5.1.2 The General Case of Strictly Negative Shear (τ < 0)

In the general case of strictly negative shear, τ < 0, the real positive solution of (2.7) for
the contact angle β is

β = − 3τmg(mā)

2 sin αf(mā)

{

1 + 2 cosh

[

1

3
cosh−1

(

1 − 4Q̄m sin2 αf2(mā)

3τ3g3(mā)

)]}

, (5.6)

and the maximum thickness hm is given by (2.6) with β given by (5.6). The rivulet becomes
deep near the top and the bottom of the cylinder according to

β ∼ − 9τg(ā)

2αf(ā)
→ ∞ and hm ∼ − 9τg(ā)

2αf(ā)
tanh

( ā

2

)

→ ∞ (5.7)
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as α → 0+ and

β ∼ − 9τg(ā)

2(π − α)f(ā)
→ ∞ and hm ∼ − 9τg(ā)

2(π − α)f(ā)
tan

( ā

2

)

→ ∞ (5.8)

as α → π−; also β and hm take the O(1) values

β = −7τ

6ā

{

1 + 2 cosh

[

1

3
cosh−1

(

1 − 405Q̄

49τ3ā

)]}

and hm =
βā

2
(5.9)

at α = π/2. In the limit of a very narrow rivulet, ā → 0+, the rivulet becomes narrow
and deep everywhere according to (5.5) (showing that, rather unexpectedly, its behaviour
is independent of τ).

The behaviour of the present solution when a = ā < π is illustrated in Fig. 10, which
shows plots of the contact angle β and the maximum thickness hm as functions of α/π when
Q̄ = 1 for (a,b) various values of τ (≤ 0) when ā = 2 (< π) and for (c,d) various values of ā
satisfying ā < π when τ = −1.

5.2 The Marginal Case a = ā = π

In the marginal case a = ā = π the rivulet behaves qualitatively as in the case of a narrow
rivulet with a = ā < π except that, since in this case β = 0 at α = π, instead of satisfying
(5.3) in the special case of no shear, τ = 0, or (5.8) in the general case of strictly negative
shear, τ < 0, the rivulet becomes deep with zero contact angle and finite semi-width π near
the bottom of the cylinder according to

β ∼
(

3π2Q̄(π − α)5

320

)

1

3

→ 0+ and hm ∼
(

24Q̄

5π(π − α)

)

1

3

→ ∞ (5.10)

when τ = 0 and

β ∼ −9πτ(π − α)

40
→ 0+ and hm ∼ − 9τ

5(π − α)
→ ∞ (5.11)

when τ < 0, as α → π−.

5.3 A Wide Rivulet with a = ā > π

Unlike for a narrow rivulet with a = ā < π, for a wide rivulet with a = ā > π for all values of
Q̄ and τ (≤ 0) there is a slowly varying rivulet that runs from the top of the cylinder α = 0
only as far as a station α = αdepin (π/2 < αdepin < π) on the lower half of the cylinder,
and its contact angle β, again given by (5.1) in the special case of no shear, τ = 0, or (5.6)
in the general case of strictly negative shear, τ < 0, is a monotonically decreasing function
of α, attaining its minimum physically realisable value of zero at the station α = αdepin,
where αdepin is given by

αdepin = cos−1

(

−π2

ā2

)

for ā > π. (5.12)

Note that, rather unexpectedly, αdepin is independent of both τ and Q̄, and hence coincides
exactly with the corresponding angle found by Paterson et al. (11) in the special case of
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α/π

β

τ = 0

τ = −2

(a)
α/π

hm

τ = 0

τ = −2

(b)

α/π

β

ā = 3

ā = 0.25

(c)
α/π

hm

ā = 0.25

ā = 3

(d)

Fig. 10 Plots of (a,c) the contact angle β and (b,d) the maximum thickness hm as functions of the scaled
angle α/π when Q̄ = 1 for (a,b) τ = −2, −1.75, . . . , 0 when ā = 2 (< π), and (c,d) ā = 0.25, 0.5, 1, . . . , 3
when τ = −1.

no shear, τ = 0. The rivulet again becomes deep near the top of the cylinder according
to (5.2) when τ = 0 or (5.7) when τ < 0, and again β and hm take the O(1) values given
by (5.4) when τ = 0 or (5.9) when τ < 0 at α = π/2. At α = αdepin the rivulet has zero
contact angle β = 0, semi-width a = ā > π, and maximum thickness hm = hmdepin, where
hmdepin (> 0) is the real positive solution of (2.16c) when α = αdepin, namely

hmdepin =

(

24Q̄ā

5
√

ā4 − π4

)

1

3

(5.13)
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when τ = 0 and

hmdepin = − 3τ ā2

5
√

ā4 − π4

{

1 + 2 cosh

[

1

3
cosh−1

(

1 − 100Q̄(ā4 − π4)

9τ3ā5

)]}

(5.14)

when τ < 0. Furthermore, as α → α−
depin we find that β → 0+ according to

β = βdepin (αdepin − α) + O(αdepin − α)2, (5.15)

a ≡ ā, and hm → h−
mdepin according to

hm = hmdepin +
5(ā4 + π4)h2

mdepin + 9τ ā2
√

ā4 − π4hmdepin

6π2(5
√

ā4 − π4hmdepin + 6τ ā2)
(α − αdepin) + O(α − αdepin)2,

(5.16)
where the coefficient βdepin (> 0) in (5.15) is the real positive solution of the cubic
polynomial equation that is obtained from (2.7) in the limit α → α−

depin, and is given
by

βdepin =

√
ā4 − π4

4ā
hmdepin, (5.17)

together with (5.13) or (5.14), as appropriate.
Since there is no physically realisable rivulet solution in the interval αdepin < α ≤ π, an

alternative description of the behaviour is required there. The scenario we will consider
is the one proposed by Paterson et al. (11), namely that for 0 6 α < αdepin the rivulet
behaves according to the description of a narrow rivulet given in Subsection 5.1, but that
the contact lines de-pin at α = αdepin, and the rivulet runs from α = αdepin to the bottom of
the cylinder α = π with zero contact angle according to the solution in the case β = β̄ = 0
given by (2.16), with monotonically decreasing semi-width a = π/m (π ≤ a ≤ ā) and
monotonically increasing maximum thickness hm ≥ hmdepin. This scenario is sketched in
Fig. 9(b). In particular, as α → α+

depin we find that β ≡ 0, a → ā− according to

a ∼ ā − ā
√

ā4 − π4

2π2
(α − αdepin) → ā−, (5.18)

and hm → h+
mdepin according to (5.16), so that the solutions in α < αdepin and α > αdepin

join continuously (but not smoothly) at the station α = αdepin. Note that Paterson et
al. (11) considered the more general scenario of de-pinning and re-pinning at a non-zero
contact angle, but for simplicity we restrict our attention to the simplest case of de-pinning
at zero contact angle here.

5.3.1 The Special Case of No Shear (τ = 0)

In the special case of no shear, τ = 0, the real positive solution of (2.16c) for the maximum
thickness hm in the interval αdepin 6 α 6 π is

hm =

(

24Q̄m

5π sin α

)

1

3

. (5.19)
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Near the bottom of the cylinder the rivulet becomes deep with finite semi-width π according
to

a ∼ π +
π

4
(π − α)2 → π+ and hm ∼

(

24Q̄

5π(π − α)

)

1

3

→ ∞ (5.20)

as α → π−. Also, in the limit of a very wide rivulet, ā → ∞, for which αdepin → π/2+, the
rivulet becomes wide and flat according to

β ∼
(

3Q̄m3

2ā sin α

)

1

3

→ 0+ and hm ∼
(

3Q̄

2ā sin α

)

1

3

→ 0+ (5.21)

on the upper half of the cylinder, and behaves according to the solution in the case β = β̄ = 0
given by (2.16) and (5.19) on the lower half of the cylinder.

5.3.2 The General Case of Strictly Negative Shear (τ < 0)

In the general case of strictly negative shear, τ < 0, the real positive solution of (2.16c) for
the maximum thickness hm in the interval αdepin 6 α 6 π is

hm = − 3τ

5 sin α

{

1 + 2 cosh

[

1

3
cosh−1

(

1 − 100Qm sin2 α

9πτ3

)]}

. (5.22)

Near the bottom of the cylinder the rivulet has finite semi-width a that approaches the
value π again according to (5.20) and becomes deep according to

hm ∼ − 9τ

5(π − α)
→ ∞ (5.23)

as α → π−. At leading order in the limit of a very wide rivulet, ā → ∞, for which
αdepin → π/2+, on the upper half of the cylinder β and hm take the O(1) forms

β = − 3mτ

2 sin α
and hm = − 3τ

2 sin α
(5.24)

and the rivulet behaves according to the solution in the case β = β̄ = 0 given by (2.16) and
(5.22) on the lower half of the cylinder.

The behaviour of the present solution when a = ā > π is illustrated in Fig. 11, which
shows plots of the contact angle β, the maximum thickness hm and the semi-width a as
functions of α/π when Q̄ = 1 for (a,b) various values of τ (≤ 0) when ā = 5 (> π) and for
(c,d) various values of ā satisfying ā ≥ π when τ = −1.

5.4 Free Surface Profiles

Figure 12 shows examples of cross-sectional free surface profiles of the rivulet when τ = −1
and Q̄ = 1 in the cases (a) ā = 2 (< π) and (b) ā = 5 (> π).
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α/π

β
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τ = −2

αdepin/π ≃ 0.6292(a)
α/π

hm

τ = 0

τ = −2

αdepin/π ≃ 0.6292(b)

α/π

β

ā = 40

ā = π

(c)
α/π

hm

ā = π

ā = 40

(d)

α/π

a

ā = 40

ā = π

π√− cosα

(1, π)

(e)

Fig. 11 Plots of (a,c) the contact angle β, (b,d) the maximum thickness hm and (e) the semi-width a,
all as functions of α/π (0 ≤ α ≤ π) for (a,b) τ = −2, −1.75, . . . , 0 when ā = 5 (> π) and Q̄ = 1 and (c,d,e)
ā = π, 3.5, 4, 5, . . . , 10, 20, 40 when τ = −1 and Q̄ = 1. The dots indicate the corresponding values of
αdepin/π given by (5.12) at which the contact lines de-pin.
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y

h(y)

α = 7π/8

α = π/8

α = π/2

(a) y

h(y)

α = π/8

α = 7π/8
α = αdepin

≃ 1.9766

(b)

Fig. 12 Cross-sectional free surface profiles h(y) when τ = −1 and Q̄ = 1 in the cases (a) ā = 2 (< π)
at α = π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8 and (b) ā = 5 (> π) at α = π/8, π/4, 3π/8, π/2, αdepin =
cos−1(−π2/25) ≃ 1.9766, 3π/4 and 7π/8. For clarity, the two parts of this figure use the same vertical but
different horizontal ranges.

5.5 The Limit of Weak Shear (τ → 0−)

In the limit of weak shear, τ → 0−, β and hm take the forms

β = β0 + τβ1 + O(τ2) and hm = hm0 + τhm1 + O(τ2). (5.25)

The leading order terms β0 and hm0 are the forms of the contact angle and maximum
thickness in the special case of no shear, τ = 0, given by (5.1) and (2.6), respectively, for
0 6 α < αdepin, and by (5.19) on the lower half of the cylinder for αdepin ≤ α ≤ π. The
first order terms β1 and hm1 are given by

β1 = − 3mg(mā)

2f(mā) sin α
and hm1 = − 3g(mā)

2f(mā) sin α
tanh

(mā

2

)

(5.26)

on the upper half of the cylinder,

β1 = − 7

6ā
and hm1 = − 7

12
(5.27)

at α = π/2, (5.26) with “tanh” replaced by “tan” in the expression for hm1 on the lower
half of the cylinder for π/2 < α < αdepin, and

hm1 = − 3

5 sin α
(5.28)

on the lower half of the cylinder for αdepin ≤ α ≤ π.

5.6 The Limit of Strong Shear (τ → −∞)

In the limit of strong shear, τ → −∞, the rivulet becomes deep according to

β ∼ − 9mτg(mā)

2f(mā) sin α
→ ∞ and hm ∼ − 9τg(mā)

2f(mā) sin α
tanh

(mā

2

)

→ ∞ (5.29)
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on the upper half of the cylinder,

β ∼ −7τ

2ā
→ ∞ and hm ∼ −7τ

4
→ ∞ (5.30)

at α = π/2, (5.29) with “tanh” replaced by “tan” in the expression for hm on the lower half
of the cylinder for π/2 < α < αdepin, and

hm ∼ − 9τ

5 sin α
→ ∞ (5.31)

on the lower half of the cylinder for αdepin ≤ α ≤ π. Note that β changes from O(τ) to zero
in a narrow transition layer of width O(τ−1) near α = α−

depin.

5.7 The Limit of Small Flux (Q̄ → 0+)

In the limit of small flux, Q̄ → 0+, the contact angle β behaves according to

β ∼ βQ0 −
2m3Q̄

βQ0τg(mā)
→ β+

Q0, (5.32)

and the maximum thickness hm behaves according to (2.6) with β given by (5.32) for
0 6 α < αdepin, and

hm ∼ − 9τ

5 sin α
+

40mQ̄ sin α

27πτ2
→

(

− 9τ

5 sin α

)+

(5.33)

on the lower half of the cylinder for αdepin 6 α < π, where βQ0 is the contact angle in the
special case of zero flux, namely

βQ0 = − 9mτg(mā)

2 sin αf(mā)
. (5.34)

5.8 The Limit of Large Flux (Q̄ → ∞)

In the limit of large flux, Q̄ → ∞, the contact angle and maximum thickness become large
(i.e. β → ∞ and hm → ∞, respectively) according to the solution in the special case of no
shear, τ = 0, given by (5.1) and (2.6) for 0 6 α < αdepin, and by (5.19) for αdepin 6 α 6 π.
Note that β changes from O(Q̄1/3) to zero in a narrow transition layer of width O(Q̄−1/3)
near α = α−

depin.

6. Flow Patterns Revisited

Figures 13(a) and 13(b) show how the α/π–τ parameter plane is divided by curves
corresponding to type-I and type-III flows into regions in which the solutions have the
cross-sectional flow patterns of types I–IV described in Subsection 2.4 when Q̄ = 1 (> 0)
for rivulets with various constant contact angles β = β̄ and various constant semi-widths
a = ā, respectively. In particular, Fig. 13 includes the curves corresponding to type-III flow
in the special case of zero contact angle, β = β̄ = 0, namely

τ = −
(

6Q̄m sin2 α

π

)

1

3

, (6.1)
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Fig. 13 Plots showing how the α/π–τ parameter plane is divided by curves corresponding to type-I
and type-III flows into regions in which the solutions have the cross-sectional flow patterns of types I–IV
described in Subsection 2.4 when Q̄ = 1 for (a) β = β̄ = 0.5, 1, 1.5, 2, 2.5, 5 and (b) a = ā = 1, 3, π, 5, 7, 9, 20.
The dashed curves correspond to the special case of zero contact angle, β = β̄ = 0, given by (6.1), and in
(b) the locations at which the curves corresponding to wide rivulets with a = ā ≥ π join this curve are
marked with dots. The dotted curves show the solution in the limits of (a) small contact angle, β̄ → 0+,
given by (6.2) for 0 6 α < π/2 and plotted on the β̄ = 0.5 curve and large contact angle, β̄ → ∞, given by
(6.3) and plotted on the β̄ = 5 curve, and (b) a narrow rivulet, ā → 0+, given by (6.4) and plotted on the
ā = 1 curve and a wide rivulet, ā → ∞, given by (6.5) for 0 6 α < π/2 and plotted on the ā = 20 curve.

obtained using the fact that hm = −2τ/ sin α for type-III flow (as mentioned in Subsec 2.4),
together with (5.22). The maximum strength of (negative) shear such that type-III flow
exists at some station α = constant on the cylinder is denoted by τ = τIIIm. As Fig. 13
shows, there are two stations (α = αIII1 and α = αIII2 > π/2, where αIII1 < αIII2) at which
type-III flow exists when |τ | < |τIIIm|, one (α = αIII > π/2) when τ = τIIIm, and none when
|τ | > |τIIIm|. In the latter case the flow is always upwards at z = hm (i.e. type IV for all
α). Of course, since Q̄ > 0, type-V flow is not possible here.

For type-III flow, in the limit of small contact angle, β̄ → 0+, we have

τ ∼ − β̄ sinα

2m
→ 0− (6.2)

on the upper half of the cylinder and shown as a dotted curve in Fig. 13(a) when β̄ = 0.5,
and (6.1) on the lower half of the cylinder, shown as a dashed curve in Fig. 13(a). In the
limit of large contact angle, β̄ → ∞, we have

τ ∼ −1

4

(

210Q̄β̄ sin3 α
)

1

4 → −∞, (6.3)

shown as a dotted curve in Fig. 13(a) when β̄ = 5. In the limit of a narrow rivulet, ā → 0+,
we have

τ ∼ −1

4

(

210Q̄ sin2 α

ā

)

1

3

→ −∞, (6.4)
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shown as a dotted curve in Fig. 13(b) when ā = 1. In the limit of a wide rivulet, ā → ∞,
we have

τ ∼ −
(

3Q̄ sin2 α

4ā

)

1

3

→ 0−, (6.5)

on the upper half of the cylinder and shown as a dotted curve in Fig. 13(b) when ā = 20,
and (6.1) on the lower half of the cylinder, shown as a dashed curve in Fig. 13(b).

Figure 14 shows sketches of the possible flow patterns within the film and the rivulet with
constant non-zero contact angle described in Section 4 in the vertical cross-section y = 0.
In particular, Figs 14(a) and 14(b) show the case |τ | < |τIIIm|, in which α∞ < αIII1 < π/2
and αIII1 > π/2, respectively, Fig. 14(c) shows the case τ = τIIIm, and Fig. 14(d) shows the
case |τ | > |τIIIm|. Figure 14 also illustrates that the solutions for the film in 0 ≤ α ≤ α∞

and for the rivulet in α∞ < α ≤ π join continuously (but not smoothly) at the station
α = α∞. The flow patterns within the rivulet with constant width described in Section 5
are rather similar to those shown in Fig. 14 and hence are omitted for brevity.

7. Conclusions

In the present work we investigated the flow of a slowly varying rivulet with positive
prescribed flux Q = Q̄ > 0 on a slowly varying substrate, specifically the flow in the
azimuthal direction round a large stationary horizontal cylinder, subject to a prescribed
uniform azimuthal surface shear stress τ . In particular, we focused on the case of non-
positive shear stress, τ ≤ 0, that is, opposing gravity, in which there is always a solution
corresponding to a rivulet flowing down at least part of one side of the cylinder. We
considered both a rivulet with constant non-zero contact angle β = β̄ > 0 but slowly varying
semi-width a = a(α) and a rivulet with constant semi-width a = ā but slowly varying
contact angle β = β(α), and showed that they have qualitatively different behaviour.

In Section 4 we showed that, unlike in the special case of no shear, τ = 0, considered
by Duffy and Moffatt (10), in the general case when shear is present, τ < 0, a rivulet
with constant non-zero contact angle β = β̄ > 0 can never run all the way from the top
to the bottom of the cylinder, and so we considered the scenario sketched in Fig. 6 in
which an infinitely wide two-dimensional film of uniform thickness H = −3τ/(2 sin α) (> 0)
covers the cylinder from the top α = 0 to the station α = α∞, where it breaks into a
single rivulet with constant non-zero contact angle but slowly varying width that runs
from the station α = α∞ to the bottom α = π. In particular, we showed that α∞ is a
monotonically increasing function of −τ which approaches the value π/2 from below in the
limit −τ → ∞, and hence that as the strength of the (negative) shear increases the film
covers an increasingly larger part of the upper half of the cylinder.

In Section 5 we showed that, like in the special case of no shear, τ = 0, considered by
Paterson et al. (11), while a narrow rivulet with constant semi-width a = ā ≤ π can run
all the way from the top α = 0 to the bottom α = π of the cylinder, a wide rivulet with
constant semi-width a = ā > π can run from α = 0 only to the station α = αdepin, where
its contact angle becomes zero, and so we considered the scenario sketched in Fig. 9 in
which the contact lines de-pin at α = αdepin and the rivulet flows from α = αdepin to α = π
with zero contact angle but slowly varying width. In particular, we showed that αdepin is
independent of τ , and hence that as the strength of the shear is varied the rivulet always
de-pins at the same station on the lower half of the cylinder.
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Fig. 14 Sketches of the possible flow patterns within the film and the rivulet in the vertical cross-section
y = 0 when (a) |τ | < |τIIIm| and αIII1 < π/2, (b) |τ | < |τIIIm| and αIII1 > π/2, (c) τ = τIIIm, and (d)
|τ | > |τIIIm|. The dashed curves, given by z = 2(h + τ/ sin α), indicate where u = 0.
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As Fig. 4 shows, the rivulet solutions described in the present work are not the only
physically realisable solutions for flow on a stationary cylinder in the presence of a uniform
azimuthal surface shear stress. In particular, as we described in Section 3, full-ring solutions
that extend all the way round the cylinder, which are impossible in the absence of shear,
exist when the shear is sufficiently strong; these solutions will be analysed in a subsequent
publication.
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