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Abstract— Phase correlation is a well-established frequency domain method to estimate rigid 2-D translational motion between pairs 

of images. However, it suffers from interference terms such as noise and non-overlapped regions. In this paper, a novel variant of the 

phase correlation approach is proposed, in which 2-D translation is estimated by projection-based subspace phase correlation (SPC). 

Conventional wisdom has suggested that such an approach can only amount to a compromise solution between accuracy and efficiency. 

In this work, however, we prove that the original SPC and the further introduced gradient-based SPC can provide robust solution to 

zero-mean and non-zero-mean noise, and the latter is also used to model the interference term of non-overlapped regions. 

Comprehensive results from synthetic data and MRI images have fully validated our methodology. Due to its substantially lower 

computational complexity, the proposed method offers additional advantages in terms of efficiency and can lend itself to very fast 

implementations for a wide range of applications where speed is at a premium. 
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I. INTRODUCTION 

Registration of images plays a crucial role in the analysis of multi-dimensional visual data in the digital domain, where at least two 

images captured under different circumstances, such as from different sensors or at different times, need to be aligned for 

consistent measurement and processing. This can benefit a wide range of applications, including remote sensing [1-2], motion 

detection [3], image mosaicking [4, 36, 37], object recognition [5], medical imaging [6] and super-resolution for data visualization 

[7] as well as surveillance and video compression [7, 8]. As a consequence the literature is enormous and any attempt to provide an 

account of it would be out of the context of this paper. Apart from a comprehensive survey in [8], some more recent papers can be 

found in [9-12], though they mainly focus on particular topics such as deformable medical image registration [9], remote sensing 

image registration [10], evolutionary image registration methods for 3D modeling [11] and 2D/3D registration methods for 

image-guided interventions [12].  

Among many approaches proposed, phase correlation is a well-known technique for image registration [8][14], and has been 

successfully used in many applications such as object recognition [13] and motion estimation [15][16]. Further applications 

include verification in video shot detection [17] and motion extraction for video summarization and retrieval [18] [19]. The 

baseline method utilizes the Fourier shift theorem, according to which shifts in the spatial domain correspond to linear phase 

changes in the frequency domain. Phase correlation is then further extended to estimate changes of rotation and scale using the 

Fourier-Mellin transform and the so-called pseudo-polar Fourier transform [20], [21]. However, estimation of shifts between 

images with high accuracy remains a fundamental problem, in which potential exists for further research and improvement in terms 

of sub-pixel registration [22], [23], video frame alignment [24] and blur-invariant registration [25].  

Although pixel-level registration is adequate for some applications, higher accuracy sub-pixel registration is generally beneficial 

to most applications [26], [27]. The need for sub-pixel registration arises from the simple fact that actual displacements between 

images are oblivious to the discrete grid employed at the image acquisition stage. Additionally, in other applications such as 

magnetic resonance imaging (MRI), data are usually sampled of non-integer offsets in the spatial Fourier domain before 

reconstruction and sub-pixel registration by phase correlation is a natural approach in such a context. Detailed comparison of 

several sub-pixel schemes can be found in [28]. 

Typically, 2-D Fourier transform is utilized by existing phase correlation approaches in estimating shifts between images. Its 

complexity under fast implementation, however, still remains an issue for many applications, where massive amount of data are 

involved. In addition, 2-D approaches perform less robustly, especially in estimating sub-pixels shifts in the presence of noisy data. 

To this end, a more accurate and robust solution of sub-pixel accuracy is desirable, which forms the motivation of the work 

described in this paper.  
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The main contributions are highlighted as follows. Firstly, we derive a fast solution using projection-based subspace phase 

correlation to estimate 2-D shifts in images, which is shown more robust to zero-mean noise than existing conventional approaches 

using 2-D phase correlation. Secondly, gradient based subspace phase correlation is proposed to deal with non-overlapped regions 

between the images under registration. These regions are taken as non-zero-mean noise in projected signals and it is proved that 

they have less influence using the proposed scheme than otherwise. In addition, we also demonstrate that the proposed method will 

yield higher peak than its 2-D counterpart.  

The remaining part of this paper is organised as follows. Section 2 contains introductory concepts related to the phase correlation 

approach and problem formulation. In Section 3, subspace phase correlation and its gradient based variant are presented and their 

robustness is also demonstrated. Experimental results are given in Section 4 using synthetic data and MRI image data. 

Comparisons with existing techniques are also provided to confirm the superiority against proposed techniques. Finally, brief 

conclusions are drawn in Section 5. 

II. PROBLEM FORMULATION 

The baseline method of phase correlation is based on the Fourier shift theorem, which states that a shift in spatial domain will 

lead to linear phase differences in Fourier domain. Let ),( yxr  and ),( yxg be two images satisfying 

))(,)((),( 00 NyyMxxgyxr ⊕−⊕−=  in which the images are NM ×  in size and ⊕  refers to the modulo operator. 

Accordingly, the Fourier transforms ),( vuR  and ),( vuG  of the images should satisfy   

 
)//(2 00),(),( NvyMuxjevuGvuR +−= π
              (1) 

 
Then, the phase difference can be obtained using the normalized cross-power spectrum as given below  
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where * is the complex conjugate, 1−=j , and ),( vuP  is referred to as the cross power spectrum of the two images.  

If we apply the inverse Fourier transform 1−ℑ  to ),( vuP , a phase correlation surface (PCS) ),( yxp  can be obtained as 

follows, which is essentially a Dirac function centered at ),( 00 yx . 

( ) ),(),(),( 00
1 yyxxvuPyxp −−=ℑ= − δ               (3) 

If the two images under consideration are not perfect replicas of each other hence the surface is noisy due to interference terms 

such as noise and non-overlapped regions. The latter will cause inconsistency due to the fact that the real shift is not a strict mod 

operator. However, crucially it still contains a dominant peak whose location corresponds to the shift parameters and can be 
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recovered below, though the peak value can be less than unity as expected. 
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=               (4) 

 
Due to sub-pixel shifts, the peak value can also be substantially degraded since the peak energy can be distributed to several 

adjacent neighbouring peaks [22]. Peak height is an indication of confidence to the estimate obtained especially in the presence of 

the interference terms mentioned above. To enhance the peak identification accuracy in these cases pre-processing in the shape of 

windowing or filtering is often considered. In our paper, however, such pre-processing measures have not been considered in order 

to obtain cleaner and more straight-forward comparisons with competing methods i.e. comparisons which are not conditional upon 

using a specific pre- or post- processing regime. Nevertheless, results using spatial windowing from conventional approaches are 

also presented for evaluation purposes as discussed in Section 4.1. 

Let ),( yxn  denote the effect of the interference terms, then the original two images satisfy 

 

),())(,)((),( 00 yxnNyyMxxgyxr +⊕−⊕−=           (5) 

 
Let )],(),([),( ddddrg yyxxgyxrEyxC ++=  be the correlation function between two functions r  and g , where E  

refers to the mathematical expectation, the   corresponding cross-power spectrum becomes [30] 

 

),(/),(

),(),(
),()],(),([

)],([

)],([)],([

)],([

)],([
),(

)//(2

*

*)//(2

00

00

00

vuGvuNe

vuGvuG

vuGvuNevuG

yxC

yxCyyxxC

yxC

yxC
vuP

NvyMuxj

NvyMuxj

ddgg

ddngddgg

ddgg

ddrg
n

+=

+=

ℑ
ℑ+++ℑ

=

ℑ
ℑ

=

+−

+−

π

π

            (6) 

 
As can be seen, ),( vuPn  is no longer a simple phase difference and it will approach ),( vuP  only if we have 

0),(/),( →vuGvuN , i.e. under a high signal to noise ratio (SNR). However, this requirement cannot be always satisfied, 

especially when there are non-overlapped regions between images. As a result, we have proposed the projection-based subspace 

phase correlation to address this difficulty. Although the concepts of subspace and projection are not new in phase correlation, the 

essence of our proposed algorithm still is original, considering the fact that most existing work either needs 2-D phase correlation 

to enable subspace identification of displacement [15, 29] or shows lack of robustness [30]. In [15], based on the fact that the 

noise-free model for the phase correlation matrix is a rank one matrix, a subspace extension is proposed to identify subpixel shifts 

from the correlation matrix. A least-square fit to the phase components is employed with its slope determined as the subpixel shifts. 
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However, the phase correlation matrix needs still be generated through 2D phase correlation. For the phase correlation function 

obtained from 2D Fourier transform, a masking operator is proposed in [29] to generate a projected one whilst rejecting 

components that are unrelated to the estimated shifts. Then, Hoge’s approach [15] is applied to the so-called projected matrix to 

determine subpixel shifts for improved accuracy.  In [30], projection based subspace phase correlation is used for pixel-level image 

registration. A windowing function is applied to the raw data before registration to avoid the failure of the approach. Without image 

gradient, this approach can only deal with small displacements. On the contrary, our proposed algorithm uses only 1-D phase 

correlation to estimate 2-D offsets in a robust way as explained in the next section. As demonstrated in (6), the results from 2-D 

phase correlation suffer from the interference terms while we will show not only the efficiency but also the robustness of our 

subspace phase correlation. 

 

III. COPING WITH INTERFERENCE TERMS USING SUBSPACE PHASE CORRELATION 

In this section, firstly subspace phase correlation is derived and proved to be robust to zero-mean interference terms. Secondly, 

gradient based subspace phase correlation is further proposed to deal with non-zero-mean interference terms. Our method is shown 

to yield higher levels of accuracy and robustness and is not liable to the simple trade-off between accuracy and efficiency as 

reported in [30], [31], [32]. In [30], without image gradient and a subpixel scheme, projection-based subspace phase correlation can 

only deal with pixel-level small displacements between images. In [31], integral projections are used for block motion estimation 

within video frames. Rather than using phase correlation, the mean absolute error is used to determine the pixel-level motion 

vector. Although the computational cost is low, the overall accuracy is limited. In [32], projection based phase correlation is used to 

extract motion fields between image pairs within image sequences. It is found that subspace phase correlation reaches tradeoffs of 

computational efficiency and accuracy. 

A. Subspace Phase Correlation 

Let )(xrx  and )(xgx denote respectively subspace projections of ),( yxr  and ),( yxg  onto x  axis, and let their corresponding 

1-D Fourier transforms be denoted as )(uRx  and )(uGx ,  

 

))(()(,),()( xruRyxrxr xx
y

x ℑ== ∑                 (7) 
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x ℑ== ∑                 (8) 

 
Then, we have  

 



  

 6

)0,(),(

),()(

)/0/(2

/2

uReyxr

eyxruR

x y

NyMuxj

x y

Muxj
x

==

=

∑∑

∑∑
⋅+−

−

π

π

           (9) 

)0,(),()( /2 uGeyxguG
x y

Muxj
x == ∑∑ − π               (10) 

 
where ),( vuR  and ),( vuG  are the 2-D Fourier transforms of ),( yxr  and ),( yxg , respectively.  

 
If there are no interference terms, from (1) we have  

 
MuxjeuGuR /2 0)0,()0,( π−=               (11) 

 

If we substitute (9) and (10) in (11), it derives  
 

Muxj
xx euGuR /2 0)()( π−=

               (12) 
 
which clearly shows that )(uRx  and )(uGx  are related by a phase difference that originates from )()( 0xxgxr xx −= .  

As a result, 1-D phase correlation can be used to estimate the shift in the x  direction as shown below: 
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Similarly, 0y  can also be estimated from 1-D phase correlation using the 1-D Fourier transform of projected signal to y  

direction as follows:  
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where )(vRy  and )(vGy  are respectively 1-D Fourier transforms of the projected signals, ),( yxr  and ),( yxg , onto the y axis. 

B. Dealing with the Interference Terms 

Considering the interference terms, we no longer have )()( 0xxgxr xx −= . Instead, )(xrx  can be derived below 
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where )),(( yxnE  refers to the average value (mean) of all contributing samples of ),( yxn .  

If the number N  is large enough and the effect of the interference terms exhibits as zero-mean noise, not necessarily Gaussian, 

we have 0)),(( =yxnE  hence we still have simple spatial shifts between projected signals which will lead to linear phase 

difference as given in (13) and (15). This indicates that the projected signal virtually eliminates the influence of the random noise 

component which renders the subspace phase correlation more robust in relation to conventional 2-D phase correlation. 

Regarding non-zero-mean effect of the interference terms, gradient-based information is considered. Let )(xrx  be the horizontal 

projection of ),( yxr  and its gradient signal )()1()()1( xrxrxr xxx −+=  can be derived as follows:  
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where )()1( xgx and )()1( xnx  are respectively the local gradient of the horizontal projection of ),( yxg  and ),( yxn .  

If we take the effect of ),( yxn  as non-zero-mean noise, when N is large enough we can easily derive  
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where ∑−=
yx yxnNxnE ),())(( 1 . 

In other words, we have 0)()1( =xnx  which will lead to a simple spatial shifts between )()1( xrx  and )()1( xgx . As a result, linear 

phase difference will be generated to estimate 0x  using subspace phase correlation between the two gradient signals. Similarly, we 

can prove that )()( 0
)1()1( yygyr yy −=  and use it to estimate 0y . This has clearly indicated that gradient based subspace phase 

correlation can help to overcome the effect of non-zero-mean noise; again it can be Gaussian or non-Gaussian. 

Finally, the masking operator introduced in [26] is applied to the phase correlation surface, which is useful in improving both the 

robustness and efficiency. The latter is achieved in fast identifying the corresponding peaks as only a small portion of the samples 

are considered. The estimate of 0x  and 0y  then becomes 
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where 16/0 Mw =  and 16/0 Nh = . Accordingly, the range 02/ wMx ±∈  to determine 0x̂  becomes ]
16

9
,

16

7
[

MM
x ∈ , 

where only one-eighth of the samples are remained for consideration. Similarly, 0ŷ  is also determined by using only one-eighth of 

the samples. Further improvements may include spatial windowing for more robustness as suggested in [29]. 

C. Peak Height Analysis 

If we take into account the expressions describing 2-D phase correlation (2)-(3) on the one hand and those describing the 

subspace variant (13)-(16) on the other hand, we can easily establish that: 
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Since all the PCS surfaces are upper bound to unity, i.e. 1|)(| ≤xpx ,  1|)(| ≤ypy  and 1|),(| ≤yxp , we have  
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yx

≥=

≥=
               

(23) 

 
The above is a simple illustration of the fact that subspace phase correlation tends to yield higher peaks than those obtained from 

2-D phase correlation. The higher peak here is useful in accurately identifying the potential matching of linear phase difference, 

especially under noisy situations. In real cases, the height of the side-peak depends on both the sub-pixel shifts and the interference 

terms [22]. Consequently, the effectiveness of the peak height is further measured by the accuracy of the recovered sub-pixel shifts, 

which are presented and discussed in the next section. 

 

IV. RESULTS AND DISCUSSIONS 

The performance of proposed method was determined by using both synthetic and real data. For synthetic data, sub-pixel shifts 

of images are generated by down-sampling of the original images. As for real data, a set of MRI images of sub-pixel displacements 

are employed.   

Using ground truth (real shifts) as a reference, an error vector between a real shift and the corresponding estimate is obtained for 

each method along the x  and y  directions. Let xδ  and yδ  denote the corresponding error vectors, i.e. )(ˆ)()( ixixix −=δ  and 

)(ˆ)()( iyiyiy −=δ , where )(ix  and )(iy  are the thi  real offsets, and )(ˆ ix  and )(ˆ iy  are their estimates. The mean squared error 

(MSE) between the estimates and the ground truth, as defined in (24), is used as an overall measurement and this is consistent with 

the work reported in [14]. Details on these tests and results are compared and discussed below. 
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A. Synthetic Data 

In Fig. 1, four original test images namely “airfield”, “Barbara”, “image043” and “pentagon” are shown. These are 8bpp images 

and their sizes are 512×512 pixels. To obtain sub-pixel displacements, the same strategy used in [22] and [23] is applied to these 

two original images, i.e. sub-pixel shifts are obtained by lowpass-filtering and down-sampling of a real high resolution. Since these 

sub-pixel shifts may lead to non-overlapped contents in the image, gradient-based subspace phase correlation is employed to deal 

with such cases.  

Since the original images we obtained are of a given resolution, up-sampling is utilized to manually generate images of high 

resolution before down-sampling is applied to yield images of sub-pixel shifts. The integer up-sampling and down-sampling 

factors are not limited to power of two, which are determined by the demanded sub-pixel shifts as follows. If the sub-pixel part of 

the offsets are 2/3 and 1/4 in x  and y  axes, the upsampling factors in horizontal and vertical directions are 3 and 4, respectively. 

Then, sub-pixel shifts are achieved by integer shifts of 2 and 1 pixels in upsampled image followed by downsampling. Please note 

that the downsampled image is of the same size as the original one. 

If an offset contains integer part, it can be easily implemented by shifting the down-sampled image in corresponding pixels. 

Since such shifts may lead to non-overlapped pixels in images, normally these are treated as black pixels with intensity values of 

zero. However, this will introduce sharp intensity changes along the black boundary and cause inaccurate image gradient in 

subspace phase correlation. To address this problem, we simply ignore a wide boundary in gradients of projected signals by 

assigning their values as zero before applying subspace phase correlation. Currently, the boundary is set as one-eighth of the image 

dimension in two directions, respectively, as we suppose the shifts should not exceed such a range. It is found that this can not only 

effectively solve the problem but also improve the efficiency as the cropped image contains one-fourth of zero samples.  

To further reduce the artifacts caused by data resampling, Gaussian smoothing is applied to the upsampled image as low-pass 

filtering. Since Gaussian filter is separable, two 1-D Gaussian filters are applied to x  and y  axis, respectively. The size of the 

Gaussian kernel is decided as 12 −l  where l  is the up-sampling factor. Finally, the smoothed image is obtained via convolution of 

the upsampled image with the decided Gaussian kernel. It is worth noting that the Gaussian filter used here is a low-pass one, which 

has the potential to reduce aliasing effect towards robust image registration [7]. In addition, it is worth noting that the Gaussian 

variance between 0.5 and 1.2 is found to produce relatively better results. 

In our experiments, in total 13 shifts are used in both horizontal and vertical directions, which help to produce 169 shifted images 

for each test image. These 13 shifts are }6,75.5,667.4,5.3,333.2,25.1,0{ ±±±±±± , in which sub-pixel shifts of 1/4, 1/3, 1/2, 2/3 
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and 3/4 are used plus integer shifts varying from 0 to 6. These form a wide range of offsets in our experiments, and for each test 

image the average registration error is determined over all 169 shifted versions as reported in Table I. In Table I, our results are 

compared with those obtained from Stone [2], Hoge [15], Foroosh [22] and Tzimiropoulos [33]. Please note that only the 

translational part of the approach in [33] was implemented for benchmarking as we only deal with image shifts. To further enable 

consistent evaluations, the results from phase correlation with spatial windowing using the standard Blackman window are also 

presented in Table I. 

 

 

Table I. Table of results for shifts of the images in Fig. 1 using downsampling with or without windowing. 

Images Airfield Barbara Image043 Pentagon MSE(x,y) 

Foroosh et al [22] windowing (0.155,0.154) (0.153, 0.155) (0.151,0.151) (0.152,0.144) (0.152, 0.151) 

No window (0.207,0.156) (0.244, 0.145) (0.240, 0.267) (0.178,0.178) (0.217, 0.186) 

Hoge [15] windowing (0.210,0.210) (0.210, 0.470) (0.210,0.210) (0.516,0.210) (0.286, 0.275) 

No window (0.211,0.210) (0.210, 0.212) (0.210,0.210) (0.365,0.366) (0.249, 0.249) 

Stone et al [2] windowing (0.549,0.405) (0.533, 0.523) (0.345,0.353) (0.464,0.516) (0.473, 0.449) 

No window (0.842,0.492) (0.758, 1.193) (0.351,0.376) (0.918,0.461) (0.717, 0.631) 

Tzimiropoulos et al [33] windowing (0.134,0.131) (0.158,0.268) (0.069,0.095) (0.127,0.128) (0.122,0.156) 

No window (0.133,0.131) (0.090,0.172) (0.065,0.079) (0.127,0.130) (0.104,0.128) 

Our 

subspace 

methods 

No gradient/no window (4.136,0.137) (0.193, 4.167) (0.225,0.234) (0.151,0.138) (1.176, 1.169) 

Gradient 
windowing (0.183,0.181) (0.155,0.169) (0.272,0.238) (0.228,0.186) (0.210, 0.193) 

no window (0.226,0.223) (0.237, 0.178) (0.228,0.237) (0.204,0.209) (0.224, 0.212) 

 

To achieve sub-pixel accuracy, two 1-D Gaussian curves are fitted using the dominant peak ),( 00 yxp  and two neighboring 

peaks where |),(| 00, nymxpC nm ++=  and }1,0,1{, −∈nm  [24]. This is also applied to Tzimiropoulos’s approach [33] when 

subpixel shifts are estimated. All four competing approaches use 2-D phase correlation are then compared against our proposed 

gradient-based subspace phase correlation.  
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              (25) 

 
As can be seen, the following observations can be made from Table 1. First, under 2D phase correlation, Stone’s approach [2] 

yields worse results in terms of highest MSE errors, followed by results from Hoge [15], Foroosh [22] and Tzimiropoulos [33]. 

Second, spatial windowing provides noticeable improvements to the estimated results for Stone [2] and Foroosh [22], yet the 

improvements on other approaches are limited. Third, for the proposed subspace phase correlation, image gradient has 

significantly improved the results, even better than some of the 2D phase correlation approaches such as Stone [2] and Hoge [15]. 
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Occasionally, both Hoge’s [15] and Stone’s [2] methods fail in estimating the corresponding shifts, no matter spatial windowing is 

used or not. This is probably due to the SVD decomposition in [15] and least-squares estimate in [2] as these are extremely 

sensitive to the change of image contents caused by downsampling. Finally, due to image gradient used with Gaussian fitting for 

subpixel estimation, Tzimiropoulos’ approach [33] outperforms all others in this group of experiments. Considering subspace 

phase correlation used in our approach, the results from ours are still quite satisfactory in comparison to those from Foroosh [22] 

and Tzimiropoulos [33].  

In addition, the results using subspace phase correlation without gradient are also shown in Table I for comparisons. Although it 

may generate better results than those with gradient, see results for “image043” and “pentagon”, it fails for other images such as 

wrong estimates for shifts in horizontal and vertical directions in “airfield” and “Barbara” images, respectively. Thanks to 

gradient-based subspace phase correlation, this problem has been resolved towards accurate and reliable image registration. 

B. Real MRI Data 

The MRI data set used in our experiments is courtesy of W. S. Hoge and contains five MRI images of a grapefruit (size of 

256×256 in 8-bit grey format) [15]. The true shifts between each pair of images are known and subsequently used as ground truth 

for performance evaluation. The first MRI image is shown in Fig. 2, along with two other images obtained by manually adding 

Gaussian noise. We compare our method against the techniques of Hoge [15], Foroosh et al [22], Balci and Foroosh [23], and 

Tzimiropoulos’ approach [33] and tabulate the results in Table II, where the results in [23] are directly quoted.   

Please note that the results in Table II are not the same as reported in our previous paper [34] due to different sub-pixel strategies 

used. In [34], linear interpolation between the first two highest peaks is used for subpixel registration, where the integer offset is 

remained if the heights of the two side peaks are within a given threshold. Apparently, the performance can be affected by the 

selected threshold. In this paper, however, subpixel accuracy is achieved through fitting two 1-D Gaussian curves over the 

dominant peak and the two side peaks, where no thresholding is needed. In addition, with similar results generated using a different 

subpixel strategy, it shows the effectiveness of the approach is mainly due to the proposed subspace phase correlation. 

In Table II, the MSE measurements in x  and y  directions are given again for comparison purposes. It can be clearly seen that 

the overall accuracy along the y -axis is better than that along x -axis, which is possibly due to the difference in generating 

displacements in different directions (see [15] for details). In x  direction, our method yields the minimum error, followed by the 

approaches from Foroosh [22], Balci [23], Tzimiropoulos [33] and Hoge [15]. In y  direction, our method is slightly worse than 

Tzimiropoulos [33] and generates the second minimum error, followed by [23], [15] and [22]. Overall, the proposed approach is 

among the best in this group of experiments.  

As there are no noise effects caused by non-overlapped regions in these test images, the advantage of gradient-based subspace 

phase correlation is less apparent. Considering the above fact we further test our subspace phase correlation method below on 
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projected signals without the use of local gradient information. For synthetic data, this will normally lead to performance 

compromise. However, for the MRI data the results are almost the same as those in Table II with local gradient applied, which 

shows that our approach can still estimate the corresponding displacements successfully. 

 

Table II. Pair-wise registration results of the five MRI images. 

Images  True offset 
(x,y) 

Foroosh et al 
[22] 

Hoge [15] Balci et al [23] Tzimiropoulos  
et al [33] 

Our  method 
With gradient No gradient 

(1,2) (-2.40,-4.00) (-2.22,-4.23) (-2.03,-4.01) (-2.11,-4.00) (-2.06,-4.02) (-2.07,-4.08) (-2.07, -4.08) 
(1,3) (-4.80,-8.00) (-4.36,-8.24) (-4.13,-8.01) (-3.90,-7.49) (-4.28,-8.01) (-4.34,-8.04) (-4.34, -8.04) 
(1,4) (-7.20,-4.32) (-6.59,-4.41) (-6.81,-4.17) (-6.22,-3.93) (-6.62,-4.33) (-6.67,-4.33) (-6.67, -4.33) 
(1,5) (-7.20,-12.00) (-6.59,-12.26) (-6.82,-12.02) (-6.39,-11.42) (-6.63,-12.03) (-6.63,-12.12) (-6.63,-12.11) 
(2,3) (-2.40,-4.00) (-2.32,-3.60) (-2.10,-3.99) (-2.18,-3.87) (-2.21,-3.97) (-2.25,-3.89) (-2.26, -3.89) 
(2,4) (-4.80,-0.32) (-4.55,-0.39) (-4.28,-0.15) (-4.16,-0.31) (-4.56,-0.30) (-4.57,-0.28) (-4.57, -0.27) 
(2,5) (-4.80,-8.00) (-4.55,-8.24) (-4.78,-8.00) (-4.13,-7.73) (-4.57,-8.03) (-4.58,-7.94) (-4.58, -7.94) 
(3,4) (-2.40,3.68) (-2.40,3.61) (-2.17,3.84) (-2.34,3.55) (-2.34,3.69) (-2.39,3.63) (-2.39, 3.63) 
(3,5) (-2.40,-4.00) (-2.41,-3.56) (-2.18,-4.51) (-2.49,-3.83) (-2.35,-4.01) (-2.42,-4.05) (-2.41, -4.05) 
(4,5) (0.00,-7.68) (-0.183,-7.92) (0.01,-7.85) (-0.03,-7.84) (0.01,-7.70) (0.02,-7.67) (0.02, -7.67) 

Error MSE (x,y) (0.337,0.258) (0.366,0.191) (0.343,0.091) (0.347,0.02) (0.326,0.066) (0.326, 0.065) 

 
 

Considering the fact that � � � � �� � � � �� ��� � � �� � � � �� � ��� � ��� ��� �� � � �accurate�� � � � � � ��� � �� �� � � ��� � � �� � �� ��� � � �image registration 

error measures than expected ones as being pointed out in [15]. As a result, the relative error RE  in [15] is also utilized for 

consistent evaluation, which is defined using the Frobenius norm as 
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where ),( yx  is the estimated shift between A  and B , and MC  denotes motion compensation in which linear interpolation is 

utilized for improved accuracy. It is worth noting that, due to the y-axis is defined up-side-down in images, ),( yx−  needs to be 

used for correct motion compensation of B . Finally, the RE  measures for the 10 image pairs in Table II are displayed in Fig. 3. 

 

Table III. Average relative error RE  vs. registration methods for the ten pairs of images in Table II. 

Method GT Foro [22] Hoge[15] Balci[23] Tzimiropoulos [33] Our 

RE  0.1158 0.1065 0.1127 0.1187 0.1031 0.1024 

 
 
In Fig. 3, although the absolute values of the attained RE  measures are different from those in [15] and [23], the curves are 

quite similar, especially the one using the “physical shifts”. As can be seen, indeed most of the estimates have less error than 

knowledge of prescribed physical shifts, except the results for the last three image pairs. Again, the results of our method have 

minimum relative errors, followed by the results from Tzimiropoulos [33], Foroosh [22], Hoge [15] and Balci [23]. This is 

consistent with the evaluation in [23] which indicates that Hoge’s method [15] is better than Balci’s one. In addition, the average 
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relative errors listed in Table III also validate the analysis above. It is worth noting that our proposed approach outperforms all 

others in this group of experiments. 

C. Robustness Analysis 

To evaluate the robustness of our approach, synthetic zero-mean Gaussian noise is added to the test images. Before adding noise, 

the intensity level of the original images is normalized within ]1,0[ . Then, zero-mean Gaussian noise is generated with its variance 

changing linearly in eight levels within the interval ]04.0,005.0[ , hence eight noisy samples are obtained for each of the five 

original images. Two example images with additive noise are shown in Fig. 2. For the original image in Fig. 2, the noise level of its 

8 noisy samples are further measured in terms of the signal to noise ratio (SNR), which are 29.2, 22.8, 18.9, 16.2, 14.0, 12.3, 10.9 

and 9.5db, respectively.  

Again, pair-wise registration is performed, thus totally 80 pairs of noisy images are used for 8 different noise levels (Gaussian 

variance values). For each noise level, all the estimates from 10 pairs of images are measured using the MSE criterion. Hoge’s 

method was found to fail in most of the noisy cases. Results obtained from our approach are compared with those from Foroosh et 

al [22] as shown in Fig. 4. As can be seen, in general, Foroosh’s method generates higher MSE, though there are some exceptions 

along the y-axis. Along the x-axis, subspace phase correlation usually yields consistently lower levels of MSE than the 2-D 

approach. 

The height of the most dominant peak can be considered as an indication of robustness. Here the height ratio between the main 

peak and the second peak is not considered as the height of the latter depends on the sub-pixel shifts and other effects as mentioned 

in Section 3. Fig. 5 shows the average height of the most dominant peak as a function of increasing Gaussian variance for 2-D 

correlation and subspace correlation (along the x- and y- axes). With increasing Gaussian variance, the average height from 2-D or 

subspace correlation decreases subsequently. However, it is obvious that subspace correlation generates much higher average 

peaks than 2-D correlation, in accordance with our discussions in Section 3.3. 

D. Computational Complexity  

In both 2-D phase correlation and subspace correlation, the fast Fourier transform (FFT) is the main computational load. In some 

approaches, additional processing is required such as windowing, partial differencing or even singular value decomposition [15] 

and iterative optimization [23]. If the original images are of NN × , then the computing complexity of the FFT in 2-D and subspace 

correlation is )log( 2
2 NNΟ  and )log( 2 NNΟ , respectively. Considering the projection needed in the proposed algorithm, the 

complexity of our proposed subspace phase correlation is not N  times faster than conventional 2-D phase correlation. Further 

comparison of execution time using both 2-D phase correlation and subspace phase correlation is presented in Table IV, which is 

tested on our machine (Windows XP OS, Visual C++ implementation, PentiumD 2.8G/1G memory) using the Barbara image in 
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Fig. 1 at size of 256×256 and 512×512, respectively. Again, it has fully demonstrated the efficiency of proposed approach. In 

summary, our subspace scheme is of substantially lower complexity and consequently faster to implement. In addition, all the 

components in our approach, including the FFT, subspace projection, local gradient and linear interpolation are suitable for 

hardware implementation to further improve the efficiency.  

Finally, it is worth noting that the complexity of Hoge [15] and Stone [2] is significant higher than those of Foroosh [22] and of 

course our proposed approach. For registration of one image pair of 512×512 pixels, the relative computational complexity can be 

compared as follows. If we take the complexity of subspace phase correlation as 1, then the complexity for 2-D phase correlation 

[22], Hoge [15] and Stone [2] are 16.7, 73.8 and 1574.3, respectively, which correspondingly refer to 0.047s, 0.78s, 3.5s, and 73.8s. 

This again shows the superiority of the proposed approach. 

 

Table IV. Comparison of execution time in milliseconds for 2-D and sub-space phase correlation at different image sizes.  

Method 
Size 

2-D phase correlation Subspace correlation 
Windowing No window Gradient No gradient

256×256 184.4 168.6 12.5 12.5 
512×512 780.5 718.1 46.9 46.8 

 

V. CONCLUSIONS 

Analysis of a novel extension to the phase correlation image registration approach has been described, where the presented 

gradient-based subspace phase correlation was proved to be not only more efficient but also more effective and robust than 

conventional 2-D phase correlation. The robustness to both zero-mean noise and non-zero-mean noise has been proved 

theoretically and empirically. In addition, it is found that the masking operator is very useful in accurate and fast identification of 

the dominant peak on the correlation surface. Finally, the fact that the proposed algorithm is suitable for hardware implementation 

makes it a good candidate for a wide variety of applications like online registration and camera stabilization, although in an 

unlikely happened special case it may fail when the projected signal becomes flat. Future investigations include extension of the 

proposed method in an iterative scheme to further improve the accuracy and robustness as well as to apply the method for the 

registration of video images. Rather than others in dealing with specific noise [35], the proposed gradient-based subspace phase 

correlation shows great potential in coping with various interference terms for robust image registration. 

 

ACKNOWLEDGMENT 

The authors would like to thank Dr. W. S. Hoge for kindly providing the MRI data set and the Matlab codes for his algorithm, 

which enabled some of the comparisons contained in this paper. Thanks are also due to Dr. V. Argyriou, University of Kingston for 

his kind support in the evaluations.   



  

 1
5 

 

REFERENCES 

[1] Y. Bentoutou, N. Taleb, K. Kpalma, and J. Ronbin, “An Automatic Image Registration for Applications in Remote Sensing,” IEEE Trans. Geosci. Remote 

Sens., vol. 43, no. 9, pp. 2127-2137, 2005. 

[2] H. S. Stone, M. Orchard, E.-C. Chang, and S. Martucci, “A Fast Direct Fourier-based Algorithm for Sub-pixel Registration of Images,” IEEE Trans. Geosci. 

Remote Sens., vol. 39, no. 10, pp. 2235–2243, 2001. 

[3] E. De Castro and C. Morandi, “Registration of Translated and Rotated Images Using Finite Fourier Transforms,” IEEE Trans. PAMI, vol. 9, no. 5, pp. 

700-703, 1987. 

[4] S. Zokai and G. Wolberg, “Image Registration Using Log-polar Mapping for Recovery of Large-scale Similarity and Projective Transformations,” IEEE 

Trans. Image. Proc., vol. 14, no. 10, pp. 1422-1434, 2005. 

[5] G. Caner, A. M. Tekalp, G. Sharma, and W. Heinzelman, “Local Image Registration by Adaptive Filtering,” IEEE Trans. Image. Proc., vol. 15, no. 10, pp. 

3053-3065, 2006. 

[6] R. J. Althof, M. G. J. Wind, and J. T. Dobbins, “A Rapid and Automatic Image Registration Algorithm with Sub-pixel Accuracy,” IEEE Trans. Medical 

Imaging, vol. 16, no. 3, pp. 308-316, 1997. 

[7] P. Vandewalle, S. Susstrunk, and M. Vetterli, “A Frequency Domain Approach to Registration of Aliased Images with Application to Super-resolution,” 

EURASIP J. Applied Signal processing, DOI 10.1155/ASP/2006/71459, pp. 1-14, 2006. 

[8] B. Zitova and J. Flusser, “Image Registration Methods, a Survey,” Image and Vision Comput., vol. 21, no. 11, pp. 977-1000, 2003. 

[9] A. Sotiras, C. Davatzikos and N. Paragios, Deformable medical image registration: a survey, IEEE Trans. Medical Imaging, vol. 32, no. 7, pp. 1153-1190, 

2013 

[10] S. Dawn, V. Saxena and B. Sharma, Remote Sensing Image registration techniques: a survey, Lecture Notes in Computer Science, vol. 6134, pp. 103-112, 

2010 

[11] J. Santamaria, O. Cordon, S. Damas, A comparative study of state-of-the-art evolutionary image registration methods for 3D modeling, Computer Vision and 

Image Understanding, vol. 115, no. 9, pp. 1340-1354, 2011 

[12] P. Markelj, D. Tomazevic,, B. Likar, F. Pernus, A review of 2D/3D registration methods for image-guided interventions, Medical Image Analysis, vol. 16, no. 

3, pp. 642-661, 2012 

[13] Q. Chen, M. Defrise, and F. Deconinck, “Symmetric Phase-only Matched Filtering of Fourier-Mellin Transforms for Image Registration and Recognition”. 

IEEE Trans. PAMI, vol. 16, no. 12, pp.  1156-1168, 1994. 

[14] D. Robinson and P. Milanfar, “Fundamental Performance Limits in Image Registration,” IEEE Trans. Image Proc., vol. 13, no. 9, pp.  1185-1199, 2004. 

[15] W. S. Hoge, “Subspace Identification Extension to the Phase Correlation Method”. IEEE Trans. Medical Imaging, vol. 22, no. 2, pp.277-280, 2003. 

[16] S. Erturk, “Digital Image Stabilization with Subimage Phase Correlation Based Global Motion Estimation,” IEEE Trans. Consumer Electron., vol. 49, no. 4, 

pp. 1320-1325, 2003. 

[17] J. Ren, J. Jiang and J. Chen, “Shot boundary detection in MPEG videos using local and global indicators,” IEEE Trans. Circuits and Systems for Video 

Technology, vol. 19, no. 8, pp. 1234-1238, 2009 

[18] J. Ren and J. Jiang, “Hierarchical modeling and adaptive clustering for real-time summarization of rush videos,” IEEE Trans. Multimedia, vol. 11, no. 5, pp. 

906-917, 2009 

[19] J. Jiang, et al, “LIVE: an integrated production and feedback system for intelligent and interactive TV Broadcasting,” IEEE Trans. Broadcasting, vol. 57, no. 

3, pp. 646-661, 2011 



  

 1
6 

[20] Y. Keller, Y. Shkolnisky and A. Averbuch, “The Angular Difference Function and Its Application to Image Registration,” IEEE Trans. PAMI, vol. 27, no. 6, 

pp. 969-976, 2005.  

[21] B. S. Reddy and B. N. Chatterji, “An FFT-based Technique for Translation, Rotation, and Scale-invariant Image Registration,” IEEE Trans. Image Proc., vol. 

5, no. 8, pp. 1266–1271, 1996. 

[22] H. Foroosh, J. B. Zerubia, and M. Berthod, “Extension of Phase Correlation to Sub-pixel Registration,” IEEE Trans. Image Proc., vol. 11, no. 3, pp. 188–200, 

2002. 

[23] M. Balci and H. Foroosh, “Sub-pixel Estimation of Shifts Directly in the Fourier Domain,” IEEE Trans. Image Proc., vol. 15, no. 7, pp. 1965-1972, 2006. 

[24] I. E. Abdou, “Practical Approach to the Registration of Multiple Frames of Video Images,” Proc. SPIE, vol. 3653, pp. 371-382, 1999. 

[25] V. Ojansivu and J. Heikkila, “Image Registration Using Blur-Invariant Phase Correlation,” IEEE Signal Proc. Letters, vol. 14, no. 7, pp. 449-452, 2007 

[26] H. Shekarforoush, M. Berthod, and J. Zerubia, “Subpixel Image Registration by Estimating the Polyphase Decomposition of Cross Power Spectrum,” Proc. 

CVPR, pp. 532-537, 1996. 

[27] F. Humblot, B. Collin, and A. Mohammad-Djafari, “Evaluation and Practical Issues of Subpixel Image Registration using Phase Correlation Methods,” Proc. 

PSIP (Physics in Signal and Image Proc.), Toulouse, France, 2005. 

[28] J. Ren, J. Jiang and T. Vlachos, “High-accuracy sub-pixel motion estimation from noisy images in Fourier domain,” IEEE Trans. Image Processing, vol. 19, 

no. 5, pp. 1379-1384, 2010 

[29] Y. Keller and A. Averbuch, “A Projection-based Extension to Phase Correlation Image Alignment,” Signal Proc., vol. 87, no. 1, pp. 124-133, 2007.    

[30] S. Alliney and C. Morandi, “Digital Image Registration Using Projections,” IEEE Trans. PAMI, vol. 8, no. 2, pp. 222-233, 1986 

[31] K. Sauer and B. Schwartz, “Efficient Block Motion Estimation Using Integral Projections,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 5, pp. 

513-518, 1996. 

[32] D. Robinson and P. Milanfar, “Efficiency and Accuracy Tradeoffs in Using Projections for Motion Estimation,” Proc. 35th Asilomar Conf. Signals, Systems, 

and Computers, pp. 1425-1437, 2001 

[33] G. Tzimiropoulos, V. Argyriou, S. Zafeiriou, and T. Stathaki, “Robust FFT-based Scale-Invariant Image Registration with Image Gradients,” IEEE Trans. 

PAMI, vol. 32, no. 10, pp. 1899-1906, Oct. 2010. 

[34] J. Ren, T. Vlachos and J. Jiang, “Subspace Extension to Phase Correlation Approach for Fast Image Registration,” Proc. IEEE Int. Conf. ICIP, vol. I: pp. 

481-484, 2007. 

[35] S. Cain, M. Hayat and E. Armstrong, “Projection-based Image Registration in the Presence of Fixed-pattern Noise,” IEEE Trans. Image Proc., vol. 10, no. 12, 

pp. 1860-1872, 2001. 

[36] L. Zeng, S. Zhang, J. Zhang and Y. Zhang, “Dynamic image mosaic via SIFT and dynamic programming”, Machine Vision and Applications, 

DOI:10.1007/s00138-013-0551-8, Oct. 2013 

[37] L. Zeng, W. Zhang, S. Zhang, D. Wang, “Video image mosaic implement based on planar-mirror-based catadioptric system”, Signal, Image and Video 

Processing, DOI:10.1007/s11760-012-0413-2, Dec. 2012 

 



  

 1
7 

 

List of Figure Captions 

 

 

 

Fig. 1. Four test images used to generate sub-pixel shifts namely “Airfield”, “Barbara”, “Image043”, and “Pentagon”, respectively. 

 

 

 

Fig. 2. Three examples of test images: From left to right, the three images are respectively the original MRI image (Courtesy of W. 
S. Hoge) and two noisy images with additive Gaussian noise where the variance of Gaussian distribution are 0.02 and 0.04.  

 

 

Fig. 3. Comparison of relative errors (y-axis) vs. image pairs (x-axis) across several registration methods: “GT” refers to 
“knowledge” of physical shift, and “Foro”, “Hoge”, “Balci”, “PAMI” and “Our” respectively denote results from [22], [15], [23], 
[33] and our proposed approach. 

 

 

 

Fig. 4. Plots of mean squared errors vs. Gaussian variance from Foroosh’s 2-D phase correlation [22] and our 1-D phase 
correlation. 

 

 
Fig. 5. Average height of the most dominant peak (y-axis) vs. Gaussian variance (x-axis).  
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Fig. 4. Plots of mean squared errors vs. Gaussian variance from Foroosh’s 2-D phase correlation [22] and our 1-D phase correlation. 
 
 
 
 

 

 
 
 
 
Fig. 5. Average height of the most dominant peak (y-axis) vs. Gaussian variance (x-axis).  
 
 
 

• To prove the efficacy of subspace phase correlation in estimating 2D image offsets 

• To prove more robust results yielded from subspace approach under zero-mean noise 

• To prove our method robust to non-zero-mean noise caused by non-overlapped regions 

• To prove higher peaks yielded by our method for robustness with reduced complexity 

• To validate the effectiveness with various synthetic data and noisy MRI images  

 


