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C
ombiningmetallic nanoparticles and
adsorbed reporter molecules to cre-
ate substrates capable of producing

bright surface-enhanced Raman scattering
(SERS) signals has been an area of tremen-
dous interest for a wide range of molecular
sensing and labeling applications in recent
years.1 The attraction of SERS tags com-
pared to fluorescent organic dyes and quan-
tum dots for biological labeling is the
potential for enhanced detection sensitivity
and photostability along with the narrow
line widths of vibrational bands allowing
greater multiplexing capability. Also, by
introducing organic reporter dyes whose
absorption properties overlap with the
local surface plasmon resonance (LSPR) of
the nanostructure and the excitation laser

wavelength enables even greater signal
enhancement via surface-enhanced reso-
nance Raman scattering (SERRS).2 However,
despite these advantages, a number of
limitations have restricted the successful
development and application of Raman
tags compared to fluorescent labeling.
The vast majority of SERS studies to date

have focused on creating controlled aggre-
gates of nanoparticles and placing reporter
molecules in the vicinity of interparticle gaps.
For quasi-spherical particles, the Raman en-
hancement of isolated particles is weak, and
dramatic increases in signal are associated
with interparticle plasmonic field coupling
and the creation of “hot spots”.3 Several
routes have been demonstrated for the pre-
paration of small clusters of nanoparticles
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ABSTRACT Surface-enhanced Raman scattering (SERS) is a promising imaging modality

for use in a variety of multiplexed tracking and sensing applications in biological environments.

However, the uniform production of SERS nanoparticle tags with high yield and brightness still

remains a significant challenge. Here, we describe an approach based on the controlled

coadsorption of multiple dye species onto gold nanorods to create tags that can be detected

across a much wider range of excitation wavelengths (514�1064 nm) compared to

conventional approaches that typically focus on a single wavelength. This was achieved without the added complexity of nanoparticle aggregation or

growing surrounding metallic shells to further enhance the surface-enhanced resonance Raman scattering (SERRS) signal. Correlated Raman and scanning

electron microscopy mapping measurements of individual tags were used to clearly demonstrate that strong and reproducible SERRS signals at high

particle yields (>92%) were readily achievable. The polyelectrolyte-wrapped nanorod�dye conjugates were also found to be highly stable as well as

noncytotoxic. To demonstrate the use of these universal tags for the multimodal optical imaging of biological specimens, confocal Raman and fluorescence

maps of stained immune cells following nanoparticle uptake were acquired at several excitation wavelengths and compared with dark-field images. The

ability to colocalize and track individual optically encoded nanoparticles across a wide range of wavelengths simultaneously will enable the use of SERS

alongside other imaging techniques for the real-time monitoring of cell�nanoparticle interactions.

KEYWORDS: surface-enhanced Raman . gold nanorod . single nanoparticle imaging and spectroscopy . cell imaging
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and reporters that can then be encased in a protecting
shell such as silica4 or a polymer.5 However, obtaining
high yields of uniformly bright SERS active clusters
within colloidal suspensions has proved difficult to
fabricate, and the larger overall aggregate size may
be impractical for many in vivo applications.
The creation of single nanoparticle SERS tags

via simple design rules still remains a significant
challenge.6 The number of studies utilizing correlated
Raman-structure measurements to investigate the
SERS activity of individual nanoparticles7�14 and ag-
gregates4,15�17 are still relatively few compared to bulk
solution analyses. Recent efforts have focused on pre-
paring anisotropic particle shapes featuring sharp
edges that promote large electromagnetic fields. These
include gold nanostars,8 nanoshells,9 spiked beads,10

nanocubes,11,18 octahedral structures12 as well as
roughened13,14 particles up to several hundred nm
in size. Enhanced signals can also be obtained when
individual particles are in contact with a metallic
layer8,18,19 or assembled around a larger particle
substrate.20 Osberg et al. recently reported a SERS
investigation of individual rod dimer structures created
by lithography;21 however, an experimental study of
SERS activity at isolated single metallic nanorods pre-
pared by colloidal synthesis has not been previously
described in the literature. Recent studies involving
SERS measurements of gold nanorods and attached
reporter molecules include bulk solution measure-
ments of both nonaggregated22,23 and self-assembled
systems5,24,25 and following cellular uptake.26,27

In addition to investigating signal enhancement
factors most SERS tags are tailored to a specific excita-
tion wavelength, which is constrained by both the
LSPR of the nanoparticles and the electronic properties
of the reporter molecule. Recently, Van Duyne et al.

demonstrated for nanoantenna dimers and trimers the
excitation of additional “dark” plasmon modes in ag-
gregates results in large SERS enhancement factors at
wavelengths far from the LSPR of the nanoantenna.15

For individual particles where no hybridization of
plasmon modes occurs,28,29 the demonstration of
an approach that enables an individual nanoparticle
to exhibit SERS activity across a wide range of wave-
lengths has not yet been demonstrated.
In this article, we introduce the concept of a universal

SERRS tag (UST) featuring individual, nonaggregated
nanoparticle conjugates capable of enhanced Raman
signals across a wide range of laser excitation wave-
lengths extending from 514 to 1064 nm. This is in
contrast to the vast majority of the literature on SERS
tags which typically involves the added complexity of
a nanoparticle aggregation step and optimizes the
signal for only a single laser wavelength. The UST's
are created by the well-controlled coadsorption of
different dyes onto a gold nanorod (NR) surface which
are then polymer wrapped to create a very stable

colloidal suspension. By performing a correlated opti-
cal and scanning electron microscope (SEM) study at
the single nanoparticle level as well as bulk solution
measurements, the very high tag synthesis yields and
strong SERRS signals at different excitation wave-
lengths are clearly demonstrated. It is envisioned that
these UST's will be valuable for applications where they
can be visualized across a wide spectral range such
as for multimodal biological optical imaging.30,31

This is emphasized by also performing a toxicology
study alongside confocal Raman and fluorescent map-
ping of multiply stained dendritic cells following UST
incubation.

RESULTS AND DISCUSSION

Universal SERRS Tag design. To realize the aim of
creating a single nanoparticle SERRS tag capable of
generating strong Raman signals across a wide range
of excitation wavelengths (from 514 to 1064 nm), the
route used in Figure 1(a) was explored for the produc-
tion of UST's. A 1 L stock solution of gold nanorods
was first prepared with 46 and 11 nm average length
and width respectively, (see Supporting Information
Figure S1 for electron micrographs) which was then
repeatedly washed and resuspended in 1 mM CTAB.
We have recently demonstrated that relatively hydro-
phobic dye molecules are readily sequestered into the
CTAB bilayer when introduced to an aqueous nanorod
solution.22 A key advantage here is that both the frac-
tional surface coverage and molecular orientation
of the adsorbed dye molecules can be controlled
much more effectively than conventional electrostatic
approaches for nanoparticle dye functionalization.
The nanorod�dye conjugate is then stabilized by
wrapping with a negatively charged poly(sodium
4-styrenesulfonate), PSS layer. The final UST's reported
in this study were also wrapped with a second posi-
tively charged layer of poly(diallyldimethylammonium
chloride), PDDAC, and have remained stable in suspen-
sion at room temperature for longer than 15 months
with no change in their optical properties (data not
shown).

In order to determine which combination of dyes
were most suitable for use as universal SERRS tags, a
range of nanorod conjugates were prepared featuring
only one dye and their optical properties compared.
A summary of the absorption properties of the various
dyes investigated are shown in Figure 1(b). Each
dye used is structurally similar, each having a qua-
ternary ammonium group (see Figure S2, Supporting
Information) and are also relatively hydrophobic; thus,
we expected each dye to have comparable affinities
for the surrounding CTAB bilayer. The UV�vis spectra
show that the absorbance of the dyes selected for
comparison cover a broad range of wavelengths lead-
ing to the possibility of utilizing combinations of dyes
to create tags that are Raman active across the most
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commonly available laser excitation wavelengths.
All of these dyes also have at least a partial spectral
overlap with the LSPR extinction of the gold nanorod
solution shown in Figure 2(a).

When preparing each NR�dye conjugate the
relative nanorod and dye concentrations were kept
constant at ∼0.3 nM and 10 μM, respectively, and
incubated overnight. Following PSS wrapping, the
colloid was washed and resuspended in distilled water
multiple times to ensure that all excess dye was
removed. The extinction spectrum of each NR�dye
combination is shown in the Supporting Information,
Figure S3. Both blue and red shifts as well as dampen-
ing of the nanorod LSPR peak maximum at 815 nm
were observed depending on the resonance overlap
between the dye and NR.22,32 The absence of peak
splitting in any of the LSPR spectra, which is indicative
of plasmon-exciton coupling,32,33 is due to CTAB pre-
venting dyemolecule aggregates forming on the nano-
rod surface.22 Bulk Raman spectra were then acquired
for each nanorod�dye combination solution at 5 dif-
ferent laser excitation wavelengths (514, 532, 633,
785, 1064 nm) with each measurement normalized
with respect to a cyclohexane standard (see Figures
S4�S10, Supporting Information) to facilitate direct
comparison. As expected, no single reporter dye ex-
hibits strong Raman signals over such a wide excitation
range and basedon this analysis a combination of three
dyes were subsequently selected to form the basis of
the UST design. These were 1,10-diethyl-2,20-cyanine
iodide (DCI), diethylthiadicarbocyanine iodide (DTDCI)
and IR1048.

The extinction and Raman spectra of colloidal
suspensions of UST's prepared with this three dye
combination are shown in Figure 2. The fractional
surface coverage of each dye on the nanorod surface
depends on the relative bulk concentrations of the
nanorods, CTAB and each dye present when mixed
together. Recent work by us identified a maximum
dye loading concentration of 50 μM for DTDCI without

causing colloidal destabilization at similar nanorod and
CTAB concentrations.22 As a result, the total combined
dye concentration was fixed at 30 μM to reduce direct
competition between different dye species for avail-
able surface adsorption sites. When investigating mul-
tiple dye addition, it was discovered that a successful
UST preparation involved first introducing DCI and
IR1048 to the NR stock solution followed by a time
delay of 1 h before adding DTDCI and then leaving
overnight to equilibrate. If all three dyes were intro-
duced simultaneously, the higher affinity of DTDCI for

Figure 1. (a) Schematic outlining the preparation of universal SERRS tags (UST's). Different combinations of dyes can be
sequestered in the CTAB bilayer simultaneously before polymer wrapping with multiple polyelectrolyte layers, starting with
PSS as the base layer. (b) Extinction spectra of 10 μM dye solutions in 1 mM CTAB with the positions of the Raman laser
excitation wavelengths used in this study are also shown.

Figure 2. Optical characterization of universal SERRS tags
prepared with 3 dyes (DCI, DTDCI, IR1048) present in the
CTAB bilayer. (a) Extinction spectra of PSS-wrapped rods
both with and without dye. The small peak at 577 nm in the
UST spectrum is associated with DCI adsorbed on the NR
surface. (b) Comparative Raman analysis of the same col-
loidal UST sample at different excitation wavelengths. Data
has been baseline corrected and normalizedwith respect to
the C6H12 peak intensity at 1029 ((2) cm�1.
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the CTAB bilayer limited the partitioning of the other
two dyes (see Figure S11, Supporting Information, for
details). Instead, by using a staggered dye addition it
is clear from the Raman spectra in Figure 2(b) that
strong SERRS signals can be obtained simultaneously
across all excitation wavelengths. This was achieved
even though the relative contributions of both the
LSPR and dye to the overall SERRS signal enhancement
is strongly wavelength dependent.22

To date, very little work has been carried out on the
controlled coadsorption of multiple Raman reporters
onto the same nanoparticle surface. Le Ru et al. devel-
oped a bianalyte technique as proof of singlemolecule
detection by SERS.34 Faulds et al. have also reported
the multiplexed detection of a mixture of five different
individual dye labeled oligonucleotides conjugated
to spherical silver nanoparticles, which were also then
aggregated and excited at two wavelengths.35 The
normalized signal intensities in Figure 2(b) can be com-
pared with Figures S4�S9 (Supporting Information) as
both the NR and individual dye bulk concentrations are
similar. This reveals that the SERRS intensity at 633 nm
for the UST's is similar to that for DTDCI only but
lower for DCI at 532 nm and IR1048 at 1064 nm, which

indicates that DTDCI has a ∼2-fold higher affinity for
the CTAB bilayer. Since we have previously shown
that the dye surface adsorption follows Langmuir
isotherm behavior,22 the relative signal intensities
can be controlled via the total bulk dye concentration
and adjusting the concentration ratio of each dye at a
fixed NR concentration. For the UST's in Figure 2 further
work was not necessary to increase the relative SERRS
intensity at 532 nm to compensate for the lower surface
affinity of DCI as there was sufficient reporter coverage
to perform measurements at the single nanoparticle
level.

Correlated Single Nanoparticle SERRS and SEM Surface Map-
ping. To clearly demonstrate that strong SERRS signals
are obtained from single, nonaggregated, nanorod
tags a series of measurements were performed where
both confocal Raman and scanning electron micro-
scopy (SEM) were used tomap the same surface region
where UST's were immobilized. This was achieved by
attaching a reference grid onto an indium tin oxide
(ITO) coated glass substrate which had been function-
alized with a polyelectrolyte layer of opposite charge
to that of the outer layer of the USTs described above
(details in Supporting Information and Figure S12).

Figure 3. Correlated SEM and SERRS imaging on an ITO film coated glass slide. (a) SEM image obtained by stitching together
high resolution images of smaller areas, along with (b) corresponding Raman image obtained for a confocal mapped area
circa 14 μm� 13 μm. (c) Zoomed in views of selected area (box A) and (e�g) representative raw SERRS spectra from different
surface regions. Analysis of the peak at 1360 cm�1 (denotedf) following background subtraction was used to generate the
Raman map with the brightest areas corresponding to peak intensities >600�1700max counts/s. (d) Magnified view of
selected area (box B). Isolated nanorods are encircled. Raman data was obtained at 532 nm excitation, with an incident laser
power of 0.6 mW, 1 s integration time and data acquired at 0.25 μm spatial steps.
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After a∼1 min exposure to colloidal solution, the glass
substrate was rinsed with water and then dried, result-
ing in a low density particle surface coverage while
avoiding additional drying-induced aggregation.5

Figure 3 compares SERRS and SEM maps of the
same∼180 μm2 area. The Raman measurements were
performed first using 532 nm excitation and a 0.25 μm
step size with the laser power kept low (0.6 mW) to
ensure repeat scans could be carried out on the same
area. Also shown in Figure 3(e�g) are representative
raw spectra acquired at different locations. To generate
the false color Raman maps, the peak intensity at
1360 cm�1 was calculated using a baseline corrected
spectrum at each pixel. In order to directly visualize
individual nanoparticles, a series of stepped high-
resolution images were acquired using an environ-
mental SEM and subsequently stitched together using
an ImageJ plugin application36 by taking advantage
of the random patterning of the polycrystalline ITO
layer.

When directly comparing the expanded areas high-
lighted in Figure 3(c,d) it can be clearly seen that there
is a very strong correlation between areas of high
Raman signal with individual nanoparticles present
on the surface. The theoretical optical lateral resolution
is ∼360 nm at 532 nm excitation; however, the corre-
lated maps indicate that the actual spot size is larger
than this, as expected. The data in Figure 3(d) further
highlights that SERRS signals from individual particles
can be readily measured and that the effective excita-
tion spot width at 532 nm must be less than 600 nm.

The dual mapping approach also enabled us to
establish the percentage of nanoparticles that are
SERRS active by locating every nanorod and comparing
the optical signal at the same location. The measure-
ment acquisition settings and lateral step size used in
Figure 3 were selected to help ensure that signal from
every Raman-active particle within the mapped area
would be collected. A repeat SEM/SERRS map was also
created for another surface area of similar size on the
same substrate resulting in over 300 nanorods ana-
lyzed of which a minimum of 92% were SERRS-active.
This significant result is due to the combined reso-
nance enhancement of the dye reporter and nanorod
plus good control of the NR surface chemistry and
avoiding the added complication of an induced ag-
gregation step. For comparison, a number of studies
involving quasi-spherical metallic nanoparticles have
reported SERS yields of ∼70% and higher, but only for
aggregated colloidal systems.4,37�40

Analysis of the surface maps when only an indivi-
dual rod is present in the beam focus reveals that the
1360 cm�1 peak intensity varies from145 to450 counts/s
with a mean value of 269 counts/s. In Figure 3(f), the
weaker signal (155 counts/s) is clearly obtained from a
single particle, while the larger signal (690 counts/s) in
Figure 3(g) indicates that there are at least 2 isolated

nanorodswithin the beam focus at this region. Reasons
for the range in single nanoparticle intensities include
that there is an intrinsic variation in rod length and
thus number of reportermolecules at the single particle
level and it is likely that the nanorod and excitation
beam will not be optimally overlapping for maximum
signal at each step position. In addition, the incident
light is polarized at a fixed angle (no polarization optics
are present in the detection path) and the relative
orientation of the rod transverse and longitudinal
plasmon resonances with respect to the incident polar-
ized light is another likely source of signal variation.

The good signal-to-noise of the Raman spectra
demonstrated in Figure 3 combinedwith sub-mW laser
powers and 1 s acquisition times compares favorably
with recent SERS studies of individual particles10,12

and clusters16,20 as well as a report on the large Raman
enhancement of dye aggregates formedwithin carbon
nanotubes.41 Since a mixed layer of CTAB and three
different dyes is formed on the nanorod surface, better
understanding of this composition is required to report
ameaningful Raman enhancement factor compared to
an approach where full monolayer coverage of a single
reporter molecule is assumed. Measuring instead
the differential Raman cross-section of an individual
rod�dye conjugate at various excitation wavelengths
represents a promising route to quantify the bright-
ness of the UST's and requires the development of
new methodologies to achieve this (e.g., refs 41, 42).
Regardless of these challenges, the data presented
demonstrates that Raman spectra can be readily ob-
tained at very high yields from individual, nonaggre-
gated particles <50 nm in size.

Multiwavelength SERRS Mapping. Repeat measure-
ments were also performed where the same substrate
area was mapped using a range of multiple laser
excitationwavelengths coupled to an imaging spectro-
meter. Figure 4 compares false color images generated
at 532, 633, and 785 nm excitation on a glass slide
featuring a surface-etched reference grid and a low
particle coverage density. Each laser was kept to a
similarly low incident power (0.6 mW), which allowed
the same surface area to be mapped multiple times
with no noticeable photodegradation, while still ob-
taining strong Raman signals at the single nanoparticle
level at each available excitation wavelength. Compar-
ison of the SERRS maps and representative raw data
spectra indicate both poorer signal-to-noise and lower
spatial resolution as the excitation wavelength is in-
creased. This is partly because the diffraction limited
spot size at 785 nm is ∼60% larger than at 532 nm,
which resulted in a lower incident power density. These
results indicate that attempting similar mapping mea-
surements at 1064nmwould beevenmore challenging.
Only bulk measurements at 1064 nm were available to
us, however, the relative intensities of the normalized
signals in Figure 2 (which is higher for 1064 nm than at
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633 or 532 nm) suggests that measurements at the
single particle level at 1064 nm could be achieved. It is
also important to point out that the spectra in Figure 2
were acquired with different spectrometers from that
used in Figure 4 (and later in Figure 6) and that the LSPR
of individual surface-immobilized nanorods in air will
be considerably different from the water-suspended
bulk ensemble measurements. These factors could also
play a role in the relative SERRS intensities obtained at
different excitation wavelengths.

The particular UST's described here were designed
specifically to give high signal intensities across a wide
excitation range from 514�1064 nm. However, im-
proved imaging performance across the 532�785 nm
range can be obtained by using a different dye combi-
nation. An example is shown in the Supporting Infor-
mation (Figure S13) for tags prepared using a 1 DCI:2
DTDCI dye ratio. Improved correlation between the
Raman maps signal intensities at different excitation
wavelengths was obtained due to a relatively higher
fractional surface coverage of DTDCI on the nanorod
surface and the absence of the IR1048 dye.

Multimodal Optical Single Cell Mapping. In a final set of
experiments we demonstrate the in vitro bioimag-

ing efficacy of UST's for multiwavelength single cell

imaging measurements using Raman, fluorescence

and dark-field optical modalities. This was performed

by incubating the tags with primary (bone-marrow

derived) mouse dendritic cells (DC's), which, due to their

role in the initiation of the immune response, are likely to

be important cells for the development of new technol-

ogies using nanoparticle delivery, such as therapeutic

targeting and stimulating immunity.43,44 First, to confirm

whether the tags affect DC viability, cells were analyzed

after incubation with various concentrations of UST's

Figure 4. (a) Optical bright-field image and defined region of interest mapped. False color images of mapped area at the
following laser excitations: (b) 532 nm (laser power 0.6 mW), (c) 633 nm (laser power 0.6 mW) and (d) 785 nm (laser power
0.7 mW). All data was obtained using a 0.5 s integration time and at 0.5 μm spatial steps. White scale bars = 3 μm. The Raman
maps were created from max/min intensity analysis in peak regions at 1360 cm�1 for 532 nm and at 1245 cm�1 for both
633 and 785 nm. The max intensity areas in each map correspond to peak signals >220�1830max (532 nm), >45�330max

(633 nm) and >25�238max (785 nm) counts/s.

Figure 5. Demonstration that nanorod�PSS-PDDAC dye
conjugates do not significantly affect dendritic cell viability.
Confocal fluorescent images with nuclei staining (DAPI, blue;
405 nm excitation), Cholera Toxin Subunit B (Recombinant),
Alexa Fluor 488 Conjugate staining (cell membrane shown in
green, 488nmexcitation) andnanoparticle tags in red (633nm
excitation) after overnight incubation at (a) 100 pM and (b)
10 pM tag concentration. Flow cytometry data showing (c)
mean fluorescence intensity at 633 nm of cells incubated with
UST's for 2 h and also polymer wrapped nanorod controls, NR,
with no reporter dyes. Data shows uptake quantification is
possible for UST's using fluorescence. Shown in (d) is the per-
centage of cells undergoing early apoptosis (Annexin-V posi-
tive, Propidium Iodide negative), late apoptosis (Annexin-V
andPropidium Iodidepositive) andnecrosis (Propidium Iodide
positive, Annexin-V negative) measured by flow cytometry
after 24 h incubation with UST's at 50 and 100 pM in the cell
suspension and compared with nonstimulated cells (DCs) and
cells incubated with camptothecin only (CAM). Data shows
that the nanoparticle probes show no significant toxicity even
after 24 h-long incubations at high concentrations.
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using flow cytometry to quantify apoptotic (Annexin-
FITC) and necrotic (Propidium Iodide) cells. UST uptake
and intracellular localization was also observed using
confocal fluorescence imaging. Cells readily internalized
UST's across a range of doses and this was detectable by
both confocal imaging (Figure 5a,b) and flow cytometry
(Figure 5c,d). It is well-established that freely suspended
CTAB is cytotoxic;45,46 however, our results agree with
several recent examples in the literature where polyelec-
trolyte wrapped nanorods (with the stabilizing CTAB
bilayer still present) have been found to not have a
significant impact on cell viability.45,47,48 The formation of
a surrounding layer or corona of serum proteins around
the polymer-coated nanoparticle is also an important
part of a nonspecific cell uptake mechanism.45,49,50

The potential of UST's as imaging contrast agents
for intracellular mapping across a range of excita-
tion wavelengths is highlighted in Figure 6, where
the same cell was repeatedly mapped in separate
confocal Raman and fluorescent microscopes follow-
ing incubation with UST's. Measurements of control
cells that have not been exposed to nanoparticles are
shown in the Supporting Information (Figure S14),
where no characteristic Raman peaks associated with
intracellular molecules51 were observed at the rela-
tively low laser powers and integration times used
here. The fluorescence signal at 633 nm is due to
the DTDCI dye, which is not completely quenched
at the single nanorod level despite close proximity to
the metal surface (within the ∼4�5 nm thick CTAB

bilayer); however, no detectable fluorescent signal was
obtained when exciting at 532 nm.

All of the SERRS maps in Figure 6(b) display loca-
lized areas of varying signal intensity that is associated
with different UST densities. Relative differences be-
tween maps at each excitation wavelength are due
to a number of factors such as laser spot size and, in
particular, the relative position and depth of the focal
plane within the cell. Repeat fluorescence and Raman
maps were acquired at different focal depths for a
number of cells to confirm UST internalization as well
as signals proximate to the membrane. The lateral
and depth resolution of the fluorescence microscope
is better than that of the Raman microscope and two
fluorescent image stacks from the upper and lower cell
regions are presented in Figure 6(d) with the position
of the cell nuclei also defined by DAPI staining and
405 nm excitation. A simple visual comparison be-
tween the dark-field, SERRS and fluorescence images
demonstrate the absence of particles within the cell
nucleus, which is consistent with previous reports of
nonspecific (nontargeted) gold nanoparticle uptake
mechanisms.52 Also, a number of correlative features
can be observed between images, and Figure S15
(Supporting Information) shows an expanded view of
the region around where the representative spectra are
presented in Figure 6(e). It is also interesting to note that
the areas of the brightest fluorescence intensity do not
always correlate with the brightest SERRS signal. Further
studies are now currently underway aimed at using the

Figure 6. Multimodal optical imaging of a dendritic cell which was fixed after incubationwith 100 pMUST's for 4 h. (a) Bright-
field image and (c) transmission dark-field image of the area mapped repeatedly using (b) a Raman confocal microscope at
three different excitation wavelengths (532, 633, and 785 nm) and (d) confocal fluorescence images of lower and upper
regions of a vertical image stack (blue, 405 nm; red, 633 nm excitation). (e) Representative SERRS spectra (background
corrected) from within the circled region in each of the Raman maps. All SERRS data were obtained using a 0.5 s integration
time and at 0.4 μmspatial steps. The Ramanmapswere created frommax/min intensity analysis in peak regions at 1360 cm�1

for 532 nm (laser power 0.54 mW) and at 1245 cm�1 for both 633 and 785 nm (0.66 and 0.73 mW respectively). The brightest
intensities in each map correspond to signals >18 000�42 000max (532 nm), >5000�8900max (633 nm), >2500�6000max

(785 nm) counts/s. All scale bars = 5 μm.
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UST's to achieve dynamic correlative imaging and spec-
troscopy measurements across multiple modalities at
the single nanoparticle level in complex environments.

CONCLUSION

In this article, we have introduced the concept of
a universal SERRS tag (UST) composed of individual,
nonaggregated, gold nanorod/multidye conjugates
capable of producing signals over a wide range of
common excitation wavelengths (514�1064 nm).
Key to the successful preparation of these tags is the
well-controlled sequestering of similarly structured
dyes within the stabilizing CTAB bilayer that surrounds
the nanorod structure as well as avoiding the
need for a particle aggregation step. In addition,
the polyelectrolyte wrapping of the NR�dye con-
jugates imparts a long colloidal shelf life and
provides an established platform for further surface
functionalization. Having demonstrated that individual

nanorod�dye conjugates are readily SERRS active,
further investigations are currently underway involving
in situ kinetic measurements of dye assembly on in-
dividual nanorods to further understand and character-
ize the nanorod�dye interaction and quantify the
single nanoparticle brightness. It is very likely that the
514�1064 nm window used here can be further ex-
tended to both longer and shorter wavelengths. How-
ever, this requires investigating the relative importance
of the degree of spectral overlap between the nanorod
LSPR and each dye as well as end versus side surface
adsorption sites on the nanorod and the absolute
density of dye molecules. We envision that the ability
to readily tailor the spectral profile, brightness and
active optical window of individual particles will be
valuable for a wide range of applications involving
single particle tracking and image colocalization in
biological environments such as drug delivery and
disease detection.

EXPERIMENTAL SECTION

Chemicals. Cetyltrimethylammonium bromide (CTAB), hydro-
gen tetrachloroaurate (HAuCl4), ascorbic acid, silver nitrate
(AgNO3), sodium borohydride (NaBH4), sodium citrate tribasic
dihydrate, 1,10-diethyl-2,20-cyanine iodide (DCI), 1,10-diethyl-4,40-
dicarbocyanine iodide (DDCI), 3,30-diethylthiacarbocyanine iodide
(DTCI), 3,30-diethylthiatricarbocyanine iodide (DTTCI), 30 ,30-
diethylthiadicarbocyanine iodide (DTDCI), 1-butyl-2-[2-[3-[(1-
butyl-6-chlorobenz[cd]indol-2(1H)-ylidene)ethylidene]-2-chloro-
1-cyclohexen-1-yl]ethenyl]-6-chlorobenz[cd]indolium tetrafluo-
roborate (IR1048), poly(sodium 4-styrenesulfonate) (PSS) MW
∼70000, sodium chloride (NaCl), poly(diallyldimethylammonium
chloride) (PDDAC) MW e 100000, and cyclohexane were all
purchased from Sigma-Aldrich and used as received. All solutions
were prepared using Millipore water.

UST Synthesis. Gold nanorods were synthesized with the
reaction volume scaled up to 1 L followed by repeated (3�)
centrifugation and resuspension in 1 mM CTAB as described
previously22 and also in the Supporting Information. The
final stock solution prior to dye addition had an OD of 1.3,
which is ∼0.26 nM based on an extinction coefficient of 5 �
109 M�1 cm�1 at the λmax of the longitudinal LSPR.53 For each
individual dye�nanorod combination, 1 M stock solutions
of dye were prepared in methanol, and further diluted in
Milliporewater to 100 μM immediately prior tomixing an aliquot
with the nanorods to give a bulk dye concentration of 10 μM.
For the 3-dye UST's, 4 mL each of 100 μM DCI and IR1048 were
premixed and added to 40 mL of NR solution. Four milliliters
of DTDCI solution were then introduced either along with DCI
and IR1048 (i.e., 0 h delay) or following a 1 or 14 h equilibration
of these dyes with the NRs. The nanorod�dye conjugate was
polymer wrapped by slowly adding 8 mL of 10 mg/mL PSS in
5 mMNaCl to a 40 mL aliquot while rapidly stirring. The samples
were then centrifuged and resuspended in water five times to
ensure the removal of excess dyes from the solution. Subsequent
PDDAC wrapping, centrifugation and resuspension (2�) was
performed using the same conditions as for PSS coating.

Bulk Raman Measurements. Four different instruments were
used covering 514, 532, 633, 785, and 1064 nm excitation with
details provided in the Supporting Information. The intensities
of the bulk spectra were normalized with respect to the 1029
((2) cm�1 cyclohexane peak acquired from a neat solution
under identical conditions. A signal collection time of 10 s per
spectra was used throughout. All spectra were processed and
background corrected using Grams/AI software (version 7.0).

Raman Mapping. Confocal Raman imaging in Figures 4 and 6
was carried out using a WITec Alpha300 R instrument with 532,
633, and 785 nm excitation lasers available. All maps were
acquired using a 100� objective (Olympus MPlan, NA = 0.9)
and additional acquisition details are described in each figure
caption. WITec project 2.10 software was used for data proces-
sing of all Raman maps. Correlated single nanorod measure-
ments were performed using an environmental FEI Quanta 250
SEM operating in low vacuum mode. An ITO coated glass slide
[Sigma-Aldrich] functionalized with a PSS layer was used as a
substrate upon which a reference finder grid was also immobi-
lized (see Supporting Information and Figure S12 for further
details).

Dendritic Cell�UST Interactions. Dendritic cells (DC's) were
obtained from BALB/c mice as described previously.54 Both
FACS and confocal fluorescence imaging measurements were
performed.

FACS Measurements. DC's were diluted to obtain a 5 �
105 cells/mL concentration in complete RPMI (RPMI 1640 with
10% FCS, 100 U/mL penicillin, 100 μg/mL streptomycin, 2 mM
L-glutamine [Life Technologies,UK]). The cellswere then replated
into two 24-well Costar plates [Corning, USA] (0.5 mL/well) and
incubated with (i) nothing added; (ii) 50 pM USTs; (iii) 100 pM
USTs; or (iv) camptothecin (0.5 μL of 10mM stock per 1mL of cell
suspension). Camptothecin [Sigma-Aldrich, UK] is an apoptosis
inducer, used here as a positive control for apoptosis. Samples
were then left to incubate at 37 �C and 5% CO2 and harvested at
2, 4, and 24 h. Samples were stained using an Annexin-V(FITC)
and Propidium Iodide kit [eBioscience, UK] according to manu-
facturer's instructions and analyzed using a BD FACSCanto
equipment and BD FACSDiva software.

Confocal Fluorescence Imaging of Nanoparticle Uptake
(Figure 5a,b). DCs were replated at 5 � 104 cells/mL into one
8-well glass slide [Lab-Tek II Chamber Slide, Nunc] and duplicate
wells were inoculated with 1 pM, 10 pM and 100 pM UST's
(0.5 mL/well). These samples were left to incubate for 24 h,
stained with Cholera Toxin Subunit B (Recombinant) Alexa
Fluor 488 Conjugate [Life Technologies, UK] for 10 min and
fixedwith 4%paraformaldehyde [Sigma-Aldrich, UK]. Cells were
then gently washed with 0.5X HBSS [Life Technologies, UK] and
a coverslip mounted onto the slide using VectaShieldmounting
medium with DAPI [Vector Laboratories, UK].

Confocal Fluorescence and Raman Imaging of Cells (Figures 6,
S14, S15). DC's at 5 � 104 cells/mL were replated onto 35 mm
Grid-50 μ-dishes [Ibidi, Germany] (0.5 mL/dish) and left to
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incubate overnight at 37 �C and 5% CO2. UST's were then added
to one of the cell dishes at an approximate final concentration of
100 pM in the cell suspension and the dishes incubated for 4 h.
Cells were subsequently fixed andwashed as above and samples
left to air-dry before Raman mapping. Next, for confocal fluores-
cence mapping, coverslips were mounted onto the cell samples
using VectaShield mounting medium with DAPI. Samples were
then fluorescence mapped (at 405 and 633 nm wavelengths),
with z-stacks obtained for each analyzed cell at 0.5 μm steps
and two-frame average acquisition. Finally, dark-field imaging
in transmission was performed using a Nikon Eclipse LV100
microscope equipped with an oil dark-field condenser, a 100�
(NA = 0.9) objective and a Nikon D50 camera.
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