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Abstract
We propose an experiment to test the effects of gravity and acceleration on
quantum entanglement in space-based setups. We show that the entanglement
between excitations of two Bose–Einstein condensates is degraded after one of
them undergoes a change in the gravitational field strength. This prediction can
be tested if the condensates are initially entangled in two separate satellites while
being in the same orbit and then one of them moves to a different orbit. We show
that the effect is observable in a typical orbital manoeuvre of nanosatellites like
CanX4 and CanX5.
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1. Introduction

Quantum mechanics and relativity are the two most fundamental theories of the universe known
to science. Despite both working extremely well in predicting and quantifying effects in their
respective regimes of application, they are commonly deemed as incompatible. On one hand,
quantum mechanics predicts with great accuracy the behaviour of microscopic particles that can
be in a superposition of being in two different places at once. On the other hand, general
relativity provides an effective description of the universe at large length scales where time can
flow at different rates in different places. However, we do not fully understand what happens
when these effects occur together. The inability to unify these theories remains one of the
biggest challenges in theoretical physics today.

Understanding general relativity at small length scales where quantum effects become
relevant is a highly non-trivial endeavour that has suffered from a lack of experimental
guidance. An alternative approach is to study quantum effects at large scales, which promises to
be experimentally achievable in the near future [1, 2]. Cutting-edge quantum experiments are
reaching relativistic regimes, where the effects of gravity and motion on quantum properties can
be experimentally tested. In 2012 a teleportation protocol was successfully performed across
144 km by the group lead by Zeilinger [3]. Motivated by this success and related experimental
developments [4–6], major space agencies, e.g. in Europe and Canada, have invested resources
for the implementation of space-based quantum technologies [7–9]. There are advanced plans to
use satellites to distribute entanglement for quantum cryptography and teleportation (e.g. the
Space-QUEST project) and to install quantum clocks in space (e.g. the Space Optical Clock
project). Such experiments are of great interest since relativistic effects can be expected at the
regimes where satellites operate. For instance, it is well-known that the global positioning
system (GPS), a system of satellites used for time dissemination and navigation, requires
relativistic corrections to determine time and positions accurately. Indeed previous theoretical
work has addressed these fundamental questions by showing that gravity, motion and space-
time dynamics can create and degrade entanglement [10]. For instance, recent work [11] shows
that acceleration produces observable effects on quantum teleportation. However, current
experimental space-based designs are yet to consider these findings. In this paper we propose a
space-based experiment to test the effects of gravity and motion on quantum entanglement.

Most proposals to implement quantum technologies in space have been developed within
the framework of quantum mechanics [12]. However, quantum mechanics is a non-relativistic
theory where the effects of acceleration and gravity can only be added ad hoc. The correct arena
in which to look for relativistic effects is quantum field theory (QFT), which describes the
behaviour of quantum fields in space-time. It is a semiclassical description in the sense that
mater and radiation are quantized but the space-time is treated as a classical background.
However, unlike quantum mechanics, QFT naturally incorporates Lorentz invariance, as
required by the postulates of relativity theory. Indeed, QFT successfully merges quantum theory
and special relativity in the framework of the standard model of elementary particles. Moreover,
QFT in curved spacetime provides some answers to questions about the overlap of quantum
mechanics and general relativity [13]. Very recently we have started to see some of its
predictions be experimentally verified [14–16]. An appropriate QFT approach that includes the
effects of relativity on entanglement has been the main ingredient missing in current proposals
to use entanglement in space-based implementations of quantum technologies [1, 2]. These
ideas have also been discussed by Downes and Ralph [17] who have pointed out that in order to
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correctly account for effects that take place at increasing length and shorter time scales,
quantum information must be extended to a fully relativistic setting.

In this paper we use a QFT framework to show that the gravitational field of the Earth and
accelerated motion can induce experimentally observable effects on the basic resource for
quantum information and communication tasks, namely quantum entanglement. Our findings,
on the one hand, shed light on fundamental questions about the overlap of quantum theory and
relativity and, on the other hand, will enable experimentalists to correct negative gravitational
effects on quantum information. Our research programme aims not only to characterize
relativistic effects so that they can be corrected, but also to learn how to exploit them in order to
improve the performance of quantum technologies in space.

Recently, it has been shown that the entanglement between field modes of localized
systems, such as cavities, is sensitive to changes in acceleration [18]. Via the equivalence
principle, this means that entanglement should, therefore, be affected by changes in
gravitational field strengths. We propose to demonstrate this experimentally by considering
the entanglement between the excitations of two Bose–Einstein Condensates (BECs), each one
of them prepared in a separate satellite. The BEC excitations we consider are known as
quasiparticles or phonons. These excitations obey, under certain circumstances, a massless
Klein–Gordon equation with a very slow speed of propagation [19]. Low propagation speed is
the key element to enable the observation of the effect we describe below within realistic
experimental regimes. We propose to entangle two BEC modes, one in each BEC, while the
BECs move close to each other along the same circular Earth orbit. One of the satellites will
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Figure 1. Experimental proposal. Two BECs inside separate satellites are entangled
while both are in the same circular LEO orbit. Then one of them undergoes acceleration
during a finite time in order to change to a different circular orbit, by means of a
Hohmann transfer obit.



then undergo non-uniform motion to change to an orbit subject to a different gravitational field
strength (see figure 1). Our analysis shows that the entanglement degradation between the BEC
modes is a periodic function of the change in gravitational field strength in the orbit. This effect
is already significant for typical parameters involved in microsatellite manoeuvres, which is a
great advantage since experiments involving such satellites have relatively low costs.

2. Model and results

Let us explain our methods and results in more detail. In the absence of atomic collisions, a
BEC can in principle reach absolute zero temperature and be described by a classical mean
field. However, collisions are always present and therefore, in the superfluid regime, the
condensate is better described by a mean field classical background plus quantum fluctuations.
The fluctuations, for length scales larger than the so-called healing length, behave like a
phononic quantum field. The classical background energy density, pressure and number density
play the role of an effective spacetime metric which in principle can be curved. The dependence
of this metric on the BEC parameters will be presented below. The field Π ξ( ) can be expanded

in terms of the so-called Bogoliubov modes ϕ ξ( ) [19],
∑Π ξ ϕ ξ ϕ ξ= + * †( )( ) ( ) ( )a a . (1)

k
k k k k

We use ξ to denote arbitrary coordinates. The operators ak and
†ak associated with the modes are

annihilation and creation operators, respectively, which obey the standard canonical
commutation relations. The dispersion relation is given by ω = c kk s where cs is the speed
of sound.

In a homogenous condensate, the modes obey a massless Klein–Gordon equation Π□ = 0

where the d’Alembertian operator g g g□ = − ∂ − ∂( )1 a
ab

b depends on an effective

spacetime metric g
ab
, with determinant g given by (see appendix A): [20, 21]

g
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Note that this metric is a function of the background mean field properties of the BEC such as
the number density n0, the energy density ρ

0
and the pressure p

0
. The effective curvature

naturally arises from decoupling the field equations of the background mean field and the
quantum fluctuations. Va is the BEC 4-velocity with respect to the laboratory reference frame,
while g

ab
is the background, real spacetime metric that in general may be curved. Strictly

speaking, in the experiment we propose, the BECs move in a Schwarzschild metric. However,
due to the smallness of the Schwarzschild radius of the Earth, it is reasonable to assume that the
spacetime is flat. The BECs are inertial while they free fall in a circular orbit, and in this case we
use Minkowski coordinates ⃗( )t x, . In order to change the orbit of one of them, so that it
undergoes a change in gravitational potential, acceleration is required. We consider that the
satellite undergoes a single change in velocity, that is a single period of uniformly accelerated
motion. The direction, intensity and duration uniquely determines the new orbit. Therefore, we
consider a Rindler transformation of the Bogoliubov modes since Rindler coordinates are
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suitable to describe periods of uniformly accelerated motion (see appendix B). We choose the
comoving frame = ( )V c; 0, 0, 0a since we want to describe the effects in the rest frame of the
BEC. Under these conditions we obtain an effective metric g

ab
which is also conformally flat

(see appendix A).
For the sake of simplicity, we consider a quasi one dimensional BEC. Suitable close to

hard-wall boundary conditions [22–24], this allows us to consider a spectrum similar to the
well-known spectrum of an optical cavity given by ω π= ×2n

n c

L
s , where L is the length of the

cylinder. Initially, two space experimentalists, Valentina and Yuri, prepared a two-mode
squeezed state between two inertial BECs with squeezing parameter >r 0. Details on how to
prepare such a state are discussed in appendix C. The quantum correlations of this state are fully
characterized by the reduced covariance matrix of the two modes σ ′kk , a real 4 × 4 matrix that
only depends on r (see appendix C). In particular, entanglement can be quantified with the
negativity which for this state is given by [25]

⎡
⎣⎢

⎤
⎦⎥= −( )N emax 0,

1
2

1 , (3)( ) r0 2

where the condensate undergoes free evolution. After preparing the initial state, Yuri moved his
BEC into an orbit subject to a different gravitational potential. This is achieved by accelerating
with constant acceleration a for a proper time τ as measured by an observer at the centre of the
rigid trap [26]. Once in the new orbit, the BEC moves inertially again. It is important to make
sure that the motion preserves the homogeneity of the condensate. In principle, the acceleration
can make the condensate become inhomogeneous. However, these effects are negligible in the
regimes considered in our discussion (see appendix B). The initial covariance matrix σ of the
state including all modes is transformed after the change in orbit into σ σ˜ = S ST , where S is a
symplectic matrix that encodes the time evolution of the system. The reduced covariance matrix
σ̃ ′kk for the two particular modes k and ′k of interest can be obtained from σ̃ . During inertial and
uniformly accelerated segments of motion, the field modes only undergo free evolution.
Therefore, the transformation in this case is simply composed of local rotations with angles ω tk

and ω ′tk , where ωk and ω ′k are the angular frequencies of the modes k and ′k respectively.
However, during changes from inertial to accelerated motion, the modes undergo a Bogoliubov
transformation with coefficients αmn0 and β

mn0 that relate the mode functions in the Minkowski
and Rindler frames [27]. The coefficients αmn0 account for mode mixing within the moving
condensate, while β

mn0 account for particle pair production. Therefore, the total Bogoliubov
coefficients αmn, β

mn
are functions of αmn0 , β

mn0 and of phases acquired during the period of
uniform acceleration. They can be computed analytically (see appendix C) using a perturbative
expansion in the parameter:

= ≪h a L c 1 . (4)s
2

We can write the coefficients as α α α= + + ( )h O hmn mn mn
2( ) ( )0 1 and β β β= +h h

mn mn mn
2( ) ( )1 2

+ ( )O h3 . After the change of orbit, we find that the entanglement has changed and is

now given by = + + ( )N N N h h( ) ( )0 2 2 4 . More specifically:
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⎡⎣ ⎤⎦= − + −α β β
′ ′ ′( )( )N N e f f h e f hmax 0, 1 , (5)( ) r

k k

r

k

0 2 2 2 2

where α
′f

k
, β

′f
k

are functions of the Bogoliubov coefficients that depend periodically on the

difference of gravitational field strength (see appendix C). Note that N ( )0 is the entanglement of

the initial state given by equation (3). N is always smaller than N ( )0 , since the entanglement is
degraded by mode mixing and particle creation [14, 11]. This degradation effect becomes
observable for large enough, but still perturbative, values of h, ≃h 0.052 [11]. In optical
cavities, these values of h are obtained with accelerations of −10 m s23 2 (see equation (4)) while
in superconducting cavities, the corresponding order of magnitude is −10 m s17 2, which can be
achieved by non-mechanical means [14, 11]. In the case under study here namely, BECs, the
typical values μ≃L 100 m and = −c 1 mm ss

1 give rise to ≃ − −a 10 m s3 2.

3. Experimental setup

We now assess the feasibility of testing the degradation of entanglement due to orbit changes
with a space-based experiment using a pair of nanosatellites. Nanosatellites are fully functional
spacecraft with a mass of 1–10 kg. The use of conventional off-the-shelf parts, component
miniaturization, and standardized systems means that they are a comparatively low cost avenue
to space. Capabilities such as power, attitude and position control, propulsion, optics,
communication, and autonomous operation are under active development, which greatly
expands the missions that may be undertaken within the mass and volume envelope of the
nanosatellite platform. At the same time, quantum experiments have also become more compact
which makes it feasible to place them on small satellites [6].

An example of the capability required for such an experiment is the pair of CanX 4 and
CanX 5 [28, 29] satellites due to have launched in 2013. These are built according to the generic
nanosatellite bus specification which consists of a 20 cm a side cube with a mass of
approximately 7.5 kg. Typically, such a spacecraft will have a mission payload volume of 1.8
litres and mass of 2 kg. The CanX 4/5 pair will demonstrate formation flying in orbit and are
each equipped with high precision differential GPS receivers for cm relative positioning
determination, and a single axis thruster allowing orbit changes. The latter consists of the
Canadian Nanosatellite Advanced Propulsion System and has a rated thrust of 20 mN and an Isp

of 35 s resulting in a Δ V of −11.1 m s 1. Therefore the satellites can accelerate with the constant
acceleration ≃ − −a 10 m s3 2 necessary to make the predicted effects observable. Let us consider
a pair of satellites, such as CanX4 and CanX5, moving along the same circular orbit. Each
satellite contains a BEC with initially entangled phonon modes. Such an entangled state can be
prepared in several ways. For instance, the BECs can be made to interact through Bragg
scattering with two separated laser beams that excite quasi-particles of specific momenta in each
condensate. Entanglement is then produced by performing projective measurements on the
scattered light beams [30]. Atom-light entangling techniques can also be used, where via
electromagnetically induced transparency and subsequent projective measurements, the
entanglement is transferred from two probe laser beams to two spatially separated BECs
[31]. Similar techniques can also be applied by considering two separate BECs in two distinct,
high-finesse optical cavities, on which two quantum correlated light fields are incident, hence
transferring their quantum correlated state to the two BECs, [32]. If the BEC is in an initial
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thermal state instead of the vacuum state, the amounts of initial squeezing and entanglement
that can be generated will be lower [33]. In order to generate a squeezing of =r 1 2 at
frequencies of 100 Hz, the BEC should be cooled down to a few nK. Finally, notice that the
experimental setup required to create and hold the BEC can be as small as 0.5 L [34]. Important
efforts are currently taking place to load and maintain a BEC on a chip device in space. See, for
example, the QUANTUS project [35] aimed at using a BEC to detect microgravity effects in
space.

The effects predicted in this work arise when a satellite undergoes a change of circular
orbit, determined by the difference in gravitational field strength between the initial and final
orbits. As an example, the change of orbit can be achieved in an efficient and elegant manner by
means of a Hohmann transfer orbit [36, 37] (see figure 1). The procedure is the following. First
a change of velocity Δ vl moves the satellite to an elliptic orbit. Then the satellite navigates half
of this new orbit, before finally a second velocity kick Δ vh puts the satellite back into a circular
orbit. The difference between the radius of the initial orbit rl and the radius of the final orbit rh

determines the magnitude of the velocity kicks through the relations

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Δ

Δ

=
+

−

= −
+

v
GM

r

r

r r

v
GM

r

r

r r

2
1

1
2

, (6)

l
l

h

l h

h
h

l

l h

where G is Newtonʼs gravitational constant and M is the mass of the earth. In
particular, assuming a small change of altitude δ= +r r rh l with δ ≪r rl, we find

Δ Δ≃ ≃ ≃ ≃δ δ ϕ − −v v 3 10 m sl h
GM

r

r

r
r

GM4 4
3 1

h h

h for a low Earth orbit (LEO) of

= +r R 400 kmh e —Re being the radius of the Earth and δ ϕ the difference in gravitational
field strength between the initial and final orbits. Therefore, for constant acceleration, each
radial distance between circular orbits is related to a different duration of the acceleration. The
whole manoeuvre takes a half-period P 2 of the elliptical transfer orbit

π≃ ≃P r GM2 5000 sh
3 , which is larger than the average lifetime of a BEC. However, the

degradation of the entanglement takes place immediately after the first change in velocity, and
can be observed during the navigation of the transfer orbit. Equations (5), (6) imply that the
entanglement oscillates with the radial distance between the initial and final orbit, or
equivalently, with the difference in the gravitational strength. In figure 2 we show that, for
realistic experimental parameters, oscillations have a significant amplitude and a period of
around 2 m, meaning that almost any change of orbit would lead to an observable effect on the
initial quantum entanglement. Note that the duration of the acceleration in the plot is of the
order of 0.1 s. The maximum change of velocity is Δ ≃ − −v 10 m sl

3 1, well within the reach of
current technologies since CanX4 and CanX5 are capable of achieving maximum changes of
velocities of Δ = −v 11.1 m s 1. Much larger changes of orbit can be considered for which the
behaviour of entanglement as a function of difference in gravitational strength is shown in
figure 2. Since CanX4 and CanX5 are designed to determine positions with an accuracy of cm,
they seem ideal devices to analyse the dependence of entanglement with the radial distance.

New J. Phys. 16 (2014) 053041 D E Bruschi et al

7



The readout of the quantum correlations might be performed in a manner similar to the
experiment in [15], where upon releasing the condensate trapping potential, each phonon is
converted into an atom with the same momentum and velocities are measured by a position
sensitive single-atom detector. Unfortunately this technique is destructive and many shots of the
experiment would be necessary to achieve the required statistics. An alternative method consists
in using atomic quantum dots or optical lattices coupled to each condensate to probe the
reduced field states of each condensate [38]. This method enables one to perform several
thousands of correlated measurements within the coherence time of the entangled state we

consider. For weakly dissipative systems the coherence time is given by = ( )t mc2 [39].

Considering that the speed of sounds is = −c 1 mm ss
1 (as shown in figure 2) and the mass of

He4 is four times the mass of the proton, we obtain that ≃t 100 ms. On the other hand, the
interaction between each dot and the condensate can be modulated through Feshbach
resonances in the sub-ms regime [40] and a number of 1500 dots can be considered [38]. This
results in the possibility of making 105 measurements in 100 ms. An alternative method to
measure the covariance matrix of a pair of phononic modes through non-destructive
measurements has been recently introduced in [41]. The detection of quantum entanglement
between phononic modes in BECs is currently a topic of great interest [33, 39, 41]. Important
steps in this direction have already been given in [15, 42]. In particular, in [42] the authors
measure quantum fluctuations of the number of phonons in a particular mode, by using in situ
techniques. Since in our case entanglement is proportional to the squeezing parameter, a
measurement of two-mode squeezing would also be an indirect estimator of the predicted
effects. Given the accelerated rate at which state-of-the-art experiments in BECs take place, it is
foreseeable that it will be possible to detect quantum correlations between phonon modes in the
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Figure 2. Negativity N versus difference in gravitational field strength between initial
and final orbits δϕ, after the first change in velocity Δvl. The acceleration of the satellite

is = − −a 10 m s3 2 (solid, blue), = · − −a 2 10 m s3 2 (red, dashed), = · − −a 3 10 m s3 2

(black, dotted) while μ=L 100 m, = −c 1 mm ss
1, giving rise to ≃h 0.052 and

Ω π= ×2 50 Hz1 . The initial squeezing is =r 1 2.



near future. The degradation effect that we predict can be as large as 20% (see figure 2) of the
initial entanglement and has a characteristic dependence on the magnitude and duration of the
acceleration.

4. Conclusions

In conclusion, we have shown that changes in the gravitational field strength produce effects on
quantum entanglement that are observable in space-based experiments. In particular, we have
shown that entanglement between two BECs inside separate satellites can be degraded when
one of them undergoes a change of orbit. Entanglement oscillates periodically with the
difference in gravitational potential of the orbits. Therefore, by accurately controlling the
satellite positions, it is possible to find a situation in which entanglement is conserved. Our
results shed light on fundamental aspects in the overlap between quantum theory and relativity
by working within QFT, a framework that appropriately incorporates these theories in regimes
where satellites operate. These results will inform future space-based quantum technologies,
including quantum key distribution and other quantum cryptographic experiments. A
comprehensive understanding of relativistic effects on quantum properties will enable us not
only to make the necessary corrections to the technologies they affect, but also opens up the
possibility of using relativistic effects as resources.

In honour of Valentina Tereshkova and Yuri Gagarin, who were the first woman and man
to go to space.
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Appendix A. Description of a Bose–Einstein condensate on an underlying spacetime

The Lagrangian density of a Bose–Einstein condensate on a spacetime metric g
ab
trapped by an

external potential μ( )V x is given by [21],

⎛
⎝⎜

⎞
⎠⎟

Φ Φ Φ Φ Φ Φ λˆ = − ∂ ∂ − + −μ† † †( )( )L g g
m c

V x U ; . (A.1)ab
a b i

2 2

2

where c is the speed of light, ℏ Planckʼs constant and =g gdet
ab
. The atomic field Φ consists of

N atoms of mass m that interact with each other through ϕ ϕ λˆ ˆ†( )U ; i . The interaction strengths

λi can in principle depend on the coordinates μx of the background space-time. In the regime
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below the critical temperature Tc, the atomic field can be approximated by Φ Φ Π= +( )10 ,
where Φ0 is a classical background field and Π is a quantum field corresponding to fluctuations
known as phonons. In this regime, the background field obeys the non-linear Klein–Gordon
equation

⎛
⎝⎜

⎞
⎠⎟

Φ Φ ρ λ Φ□ − + − ′ =μ( ) ( )m c
V x U ; 0, (A.2)g i0

2 2

2 0 0

where ρ Φ Φ= *: 0 0 is the background density and □ = − ∂ − ∂− ( )g g:g a
a1 is the dʼAlambertian

operator. The superscript in ′U denotes the derivatives with respect to ρ. Equation (A.2) reduces
to the standard Gross–Pitaevskii equation in the Newtonian limit → ∞c2 [21]. On the other
hand, the quantum fluctuations Π obey the field equation

Π Φ Π ρ ρ λ□ + ∂ ∂ − ″ =( ) ( )g U2 ln ; 0. (A.3)g
ab

a b i0

Writing Φ ρ= θei
0 , we define the generalized kinetic operators as

 ρ≡ − □ + ∂ ∂ρ ( )T g ln
m g

ab
a b2

2

, the effective speed of the phonon propagation
 ρ ρ λ≡ ″ ( )c U ;
m i0

2

2

2

2 and the four velocity vectors  θ≡ ∂u ga
m

ab
b . We can then rewrite the

equation as,

⎧⎨⎩
⎡⎣ ⎤⎦

⎫⎬⎭  
ρ

ρ Π∂ + − ∂ + − ∂ ∂ =ρ ρ[ ]i u T
c

i u T g
1

0, (A.4)a
a

b
b

ab
a b

0
2

2

ρT can be neglected when the dispersion relation for the perturbations is ω =− c ks
2 2 2 and in the

eikonal approximation [21]. That is when the background quantities vary slowly in space and
time on scales comparable with the wavelength and the period of the perturbations, respectively
[21]. This assumption is equivalent to neglecting the quantum pressure term in the
Gross–Pitaevskii equation obtained in the Newtonian limit. In this case equation (A.4)
becomes the Klein–Gordon equation

g
ggΠ Π□ =

−
∂ − ∂ =( )1

0, (A.5)a
a

where the effective metric g
ab
is defined as

g
⎡
⎣
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By defining the four-velocity ≡ ∥ ∥v ua c

u
a and the scalar speed of sound = ∥ ∥

+ ∥ ∥
cs

c c u

c u

2

1

2
0
2 2

0
2 2 , the

effective metric can be written as

g
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥=

ϱ +
+ −c

c

n

p
g

c

c
v v1 . (A.7)

ab
s

ab
s

a b
0

0 0

2

2

The conformal factor in the last equation (A.7) can be found by considering the hydrodynamical
description for a BEC [21].
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Appendix B. Inertial and accelerated motion

Having a description of the BEC on a spacetime metric enables us to describe it while it
undergoes inertial and uniformly accelerated motion. In the inertial case, we consider the
Minkowski coordinates (t, x), where the line element is given by

= = − +μν
μ νs g x x c t xd d d d d2 2 2 2. Considering that the spacetime metric g

ab
is flat, we find

from inspection of equation (A.6) that the effective metric is also flat when the spatial flow
velocities vanish. In this case the phonons obey a Klein–Gordon equation which takes the form
of a wave equation in Minkowski coordinates with propagation velocity cs. The solutions to the

equation, denoted ϕ ( )t x,
n

with ∈n , form an orthonormal set of modes in terms of which the

field Π ( )t x, can be expanded,

⎡⎣ ⎤⎦∑Π ϕ= +( ) ( )t x t x a, , h. c. . (B.1)
n

n n

Here †a a,n n are the annihilation and creation operators associated to the modes ϕ
n
. For

periods of uniform acceleration, Rindler coordinates η χ( ), are a convenient choice of
coordinates [13]. They are related to the Minkowski coordinates by the following
transformation

χ η

χ η

=

=

t
c

x

sinh

cosh , (B.2)
s

where χ > 0 has dimension length and η ∈ is the dimensionless Rindler time. The line

element in these coordinates is χ η χ= − +sd d d2 2 2 2. A uniformly accelerated observer follows a

trajectory of constant χ χ=
o
and its proper time is given by τ η= c

a
s , where = χa cs

o

2

is its proper

acceleration. When the BEC undergoes acceleration, the background density can become
inhomogeneous. In this case, it is not possible to neglect the generalized kinetic operator and it is
not possible to describe the condensate using quantum field theory in a curved spacetime. In that
case, the field equation is given by equation (A.4). Fortunately, in the acceleration regimes we
consider these effects are negligible. Indeed, mimicking the acceleration by an external potential
of the form = · ·( )V x m a x [43], we obtain that the term associated to the quantum pressure ρT

can be safely neglected as long as ≃ ≪ρ
ρ

∂ h

L

m cx . Using the values of h and L that we considered

in the main text, ≃ −h L 10 m3 1 while m c is larger than −10 m15 1. Therefore, when the BEC
undergoes uniform acceleration, the phononic BEC field obeys again a Klein–Gordon equation
which takes the form in this case of a wave equation in Rindler coordinates. The Rindler solutions
are denoted by ϕ η χ˜ ( ),

n
with ∈n and the field expansion is given by

⎡⎣ ⎤⎦∑Π η χ ϕ η χ= ˜ ˜ +( ) ( ) a, , h. c. . (B.3)
n

n n

The operators ˜ ˜ †a a,n n are now the annihilation and creation operators associated to the Rindler

modes ϕ̃
n
. The effects of the inhomogeneity cannot be addressed with the mathematical

formalism used in our analysis. Preliminary results addressing this point using numerical
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methods show that the effects are indeed small and can be neglected. Such numerical analysis
will be published elsewhere. Since in the context of a quench of the BEC [33] the
inhomogeneity produces mode mixing between modes other than k, k′, we anticipate that larger
inhomogeneity will produce further entanglement degradation in our system.

Appendix C. Bogoliubov transformations, the covariance matrix formalism and
entanglement

In our work we consider a condensate which is initially inertial, undergoes a change in the
gravitational field strength as it changes into a different orbit and is finally inertial again. The
change in field strength corresponds to a period of uniform acceleration. The mode creation and
annihilation operators in the initial and final regions denoted by †a a, and ˆ ˆ†a a, respectively, are
related through a Bogoliubov transformation [13],

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

α β
β α

ˆ
ˆ

= ·* *† †( )a
a

a
a

, (C.1)

where α ϕ ϕ= ˆ( ),nm n m
and β ϕ ϕ= − ˆ*( ),

nm n m
are Bogoliubov coefficients. Here · ·( ), denotes the

inner product. ϕ and ϕ̂ are Minkowski mode solutions in the initial and final regions,
respectively. These Bogoliubov coefficients are functions of the Bogoliubov coefficients

between the Rindler and Minkowski modes given by α ϕ ϕ= ˜( ),nm n m0 and β ϕ ϕ= − ˜*( ),
nm n m0 and

of phases acquired during the period of uniform acceleration where the condensate undergoes
free evolution (for more details see [18]). When = ≪h aL c 1s

2 is a small, it is possible to
expand the Bogoliubov coefficients (C.1) in series as




α α α α

β β β

= + + +

= + +

( )
( )

h

h , (C.2)

( ) ( ) ( )

( ) ( )

mn mn mn mn

mn mn mn

0 1 2 3

1 2 3

where the superscript ( )n denotes quantities that are proportional to hn [18, 44]. In the case we
consider here, the Bogoliubov coefficients to first order in h are given by [18, 44] ,

α δ

β

α α

π

β β

π

=

=

=

=
− + −

−

=

=
− −

+

Ω Δτ

Ω Ω Δτ

Ω Ω Δτ

Ω Ω Δτ

Ω Ω Δτ

−

− −

− −

−

−

−

−

( )

( )

( )

( )

( )
( )

e

e

e
m n

m n

e

e
m n

m n

0

1 1

1 1
, (C.3)

( )

( )

( ) ( ) ( )

( )

( )

( ) ( ) ( )

( )

mn mn
i

mn

mn
i

mn

i

m n

mn
i

mn

i

m n

0

0

1
0

1

2 3

1
0

1

2 3

n

n m

n m

n m

n m
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where Ωn are the frequencies of the modes as measured by a comoving accelerated observer and
Δτ is the proper time spent while accelerating.

Let us now consider the covariance matrix formalism, in which all the relevant information
about the state is encoded in the first and second moments of the field. In particular, the second

moments are described by the covariance matrix σ = + −X X X X X X2ij i j j i i j , where .

denotes the expectation value and the quadrature operators Xi are the generalized position and

momentum operators of the field modes given by = +−
†( )X a an n n2 1

1

2
and = −− †( )X a an

i
n n2 2

.

Every unitary transformation in Hilbert space that is generated by a quadratic Hamiltonian can
be represented as a symplectic matrix S in phase space. These transformations form the real
symplectic group ( )Sp n2 , , the group of real ×( )n n2 2 matrices that leave the symplectic

form Ω invariant, i.e., Ω Ω=S ST , where Ω Ω= ⊕ =i
n

i1 and ⎜ ⎟
⎛
⎝

⎞
⎠Ω = −

0 1
1 0i . The time evolution

of the field, as well as the Bogoliubov transformations, can be encoded in this symplectic
structure (for details see [27]). The covariance matrix after a symplectic transformation is given
by σ σ˜ = S ST . In our proposal Valentina and Yuri are initially inertial and prepare an entangled
two-mode squeezed state of their phononic modes k and ′k , each one of them in their respective
condensate. We assume that all other modes in both condensates are in the vacuum state. Using
that the trace operation over a set of modes is implemented in this formalism by deleting the
rows and columns associated to those modes, we find that the covariance matrix of the reduced
state for the modes k and ′k is given by,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟




σ

ϕ

ϕ

ϕ

=

=
−

′
′

′

′

( )
( )

( )
( )

r

r

r

r

cosh 2

cosh 2
where

sinh 2 0

0 sinh 2
, (C.4)

kk
kk

kk

kk

2

2

and r is the squeezing parameter of the state. The matrix 2 is the 2 × 2 identity matrix. The
covariance matrix after Valentina remains inertial and Yuri undergoes a single period of
uniform acceleration to move to a different orbit is given by

⎛
⎝⎜

⎞
⎠⎟σ̃ =′

′

′ ′′

C C

C C
, (C.5)k k

kk kk

kk
T

k k
,

where = ( )C rcosh 2kk 2, ϕ=′ ′ ′ ′Ckk kk k k
T and

   ∑= +′ ′ ′ ′
≠ ′

′′ ′ ′( )C rcosh 2 . (C.6)k k k k k k
T

n k
k n k n

T

The 2 × 2 matrices  encode the Bogoliubov coeffcients given by equation (C.3),

⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
⎟⎟ α α β α α β

α α β α α β
=

+ − + +

− + − + +

( ) ( )
( ) ( )

Re Im

Im Re
. (C.7)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )nm

mn mn mn mn mn mn

mn mn mn mn mn mn

0 1 1 0 1 1

0 1 1 0 1 1
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Here Re and Im denote the real and imaginary parts, respectively. A number of
computable measures of entanglement exist for Gaussian states in terms of the smallest
symplectic eigenvalue ν− of the partial transposition of σ̃ . Here we are interested in computing
the negativity of the state σ̃ ′kk to understand how entanglement is affected when Yuri has
changed his condensate into an orbit with different gravitational potential. In this case the
negativity is given by

⎡
⎣⎢

⎤
⎦⎥

ν
ν

= − −

−

N max 0,
1

2
, (C.8)

where

ν
Δ σ Δ σ σ

=
˜ ± ˜ − ˜

±
′ ′ ′( ) ( ) 4det

2
, (C.9)

kk kk kk
2

and Δ σ̃ = + −′ ′ ′ ′( ) C C Cdet det 2detkk kk k k kk . Using equations (C.2)–(C.9) we obtain our main
result, which is given by equation (5) in the main text and

∑ ∑α β= =α β
′ ′ ′ ′f f, . (C.10)( ) ( )

k
n

k n k
n

k n
1 2 1 2
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