
 
Letter to Editor JRSS – A:  Ganguly, T., Wilson, K.J., Quigley, J., and Cooke, R.M. 
 
Reaction to Babuscia, A. and Cheung, K-M "An approach to perform expert elicitation for engineering 
design risk analysis: methodology and experimental results", J.R. Statist. Soc. A (2014) 
 
Dear Madam/Sirs, 
 
It is pleasing to see an article on expert judgment in JRSS, to see attention paid to validation and to see 
abundant references to the "Cooke classical model". The article proposes a four part methodology 
comprising probabilistic thinking (part 1), calibration (part 2), elicitation (part 3) and experts’ aggregation 
(part 4) to perform expert elicitation for an application in engineering design risk analysis. In part 1, the 
biases and heuristics that exist within the the human brain are tackled through a questionnaire and a 
qualitative score is obtained. This score is based on the sum of all of the question scores: the questions are 
given equal weights. Part 2 uses a calibration process in which the calibration score is based on the 
experts’ tendency to overestimate or underestimate quantities in their field of expertise rather than the 
experts’ performance on seed variables. The calibration score is defined in Eq. (3) of this letter. In part 3 
the bounds and shapes of the distributions are elicited from the experts, who are then shown the resulting 
distribution and declare whether it is satisfactory. If not, the quantities are re-elicited to arrive at the 
experts’ elicited distribution. The last part of the methodology deals with mathematical aggregation and 
the scores from part 1 and part 2 are used to derive the aggregate distribution.  
 
This letter (a) rectifies mis-representations of the classical model, (b) identifies methodological 
shortcomings in the authors' approach and (c) compares performance of the authors' "calibration 
weighting" with equal weights and global weights of the classical model on the large expert judgment 
data set made available in Cooke and Goossens (2008).  
 
a) The classical model treats experts as statistical hypotheses and scores them with regard to statistical 
likelihood (known as calibration) and information. The calibration score is based on experts' assessments 
of "seed variables" from their field whose true values are known post hoc. Specifically, it is the p-value of 
falsely rejecting the hypothesis that the realizations are independently drawn from a distribution 
complying with the expert's assessed quantiles. Information is Shannon relative information with respect 
to a user chosen background measure. Shannon relative information is used because it is a familiar, scale 
invariant, tail insensitive slow function. The theory of proper scoring rules is invoked to compute un-
normalized weights as a product of information and statistical likelihood scores. It is not the case that seed 
variables have "a real probability distribution", they have realizations. Describing these measures as "the 
scoring of each calibration question and the level of certainty that is associated with that quantity" invites 
confusion: calibration questions are scored collectively not individually and "level of certainty" poorly 
describes the information score, as it neglects the role of the background measure. Harold Jacobson 
(1969) (not "Harold and Jacobson (1969)") derives an upper bound on the variance of unimodal 
distributions absolutely continuous with respect to Lebesgue measure. The statement that the uniform 
distribution "achieves the maximum variance across the bounded distributions..." does not reflect reasons 
for choosing the uniform background measure in the classical model. 
 
b) Babuscia and Cheung do not recommend one approach to obtain the weights but offer a choice of equal 
weights, or a combination of quality weights and calibrations weights, neither of which has a strong 
methodological warrant. Quality weights are derived from a test based on the experts’ ability to think 
probabilistically.  Simply because an expert’s assessments comply with the laws of probability does not 
mean they will provide statistically accurate and informative predictions.  Standard elicitation processes 
address biases and lack of probabilistic thinking through training, such as Spetzler et al (1975), Merkhofer 
(1987), Clemen and Reilly (2001) or, specifically in the context of engineering design, Walls and Quigley 



(2001). The authors' calibration weights are derived from assessing the (truncated) mean squared 
percentage error of each expert, through comparing realizations unknown to the expert with their best 
estimate.  A perfectly calibrated expert could be very uninformative. 
  
Once the scores are obtained a bisection method is applied to obtain weights.  This is achieved through 
ranking the experts and assigning weight of 0.5n-1 to the nth ranked expert.  Such an approach will always 
assign a weight of 0.5 to the top ranked expert regardless of the number of experts or the quality of their 
judgments. In a situation of two experts, each would receive equal weighting regardless of their 
performance.  This approach to weighting is ad hoc, ignoring much of the information obtained through 
the elicitation exercise. 
 
Generic performance measures defined within the classical model are statistical accuracy and 
informativeness.  With these measures, performance based weighting out performs equal weighting 
(Cooke & Goossens, 2008). Other performance measures could be contemplated (Flandoli et al, 2011, 
Wisse et al, 2008) and weighting schemes based on these schemes also out-perform equal weights.  Hora 
(2004) shows that equal weighting of well-calibrated experts destroys calibration.  We are unaware of any 
performance based defense of equal weighting. 
 
c) Data on 50 professional expert judgment studies was made available in Cooke and Goossens (2008) 
and has been used to evaluate several scoring proposals (see eg. Kallen and Cooke, 2002, Cooke et al, 
2008, Wisse et al, 2008)). The scoring variables, like that in Eq. (3), have been studied in various student 
theses, with the general result that such schemes do not strongly outperform equal weighting. Such equal 
weighting methods do not consider any information on the performance of the experts and as such we use 
this as a baseline for comparison. Through their Quality Weighting scheme, Babuscia and Cheung 
propose a method for obtaining weights that reflect the relative differences in performance of experts 
through the bi-section method. The resulting weights are determined by ranked performance only 
ignoring much of the relative performance data available. 
 
Two of the 50 studies were unsuitable because they had no realizations or had no medians. We have 
formed weighted combinations based on Eq. (3) (called BC weights) for the 48 remaining studies. These 
have been evaluated with respect to the statistical likelihood score (the calibration score), and also with 
the scoring variable in the authors' Eq. (3). In this comparison only global weights are used without 
adjusting the statistical power to 10 effective calibration items (for this reason the results do not always 
agree with the published values, but are the easiest for other researchers to reproduce)1. Figure 1 shows 
scatter plots of statistical likelihood (calibration) scores of global weights (GW) versus BC weights 
(BCW), BC weights versus equal weights (EW), and global weights versus equal weights.  The numbers 
of cases for which the p-value was less than or equal to 5% were 7 for EW, 8 for BCW and 3 for GW. 
(NB: some data points coincide in the plots).  
 
Babuscia and Cheung provide their own definition of "calibration"  ,S e r  for a vector of expert 
assessments e  based on a vector of realizations denoted by r  :   

                                                 
1 See (Cooke and Goossens 2008) for details. Briefly, global weights are the same for each variable and use the 
experts' average information scores. Item weights or item-specific weights use the information score for each item, 
thereby allowing an expert to up/down weight him/herself per item.  Item weights are preferred if indeed they 
outperform global weights, which they usually do.  For cross-study comparisons, the power of the calibration scores 
should be equalized, and 10 effective seed items is often chosen as default.  



 
Figure 1: Scatter diagrams comparing calibration scores for the three aggregation methods showing GW 
strictly outperforms each the other two methods in 37 of the 48 cases.  
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The expert e's best estimate for item i, ei, is truncated at 2ri. Using Babuscia and Cheung's definition of 
"calibration" in Eq. 3, as a performance measure, BCW weighting performs better with an average over 
all 48 studies of 69.94 in comparison to GW (64.48) and EW (64.13).  Of course, the truncation in Eq. (3) 
amounts to changing the experts’ best estimate based on information from the realized value, which is 
unavailable if the realization is not known. On removing this truncation and summing the percentage error 
over all realizations in all studies, the sum square percentage error was lowest (i.e. best) for GW; EW and 
BCW were respectively 3% and 29% higher than GW. 
 
A larger issue is raised by the decision to alter the experts' distributions based on the BC calibration 
information. Experts are chosen to participate in these panels because of their knowledge and standing in 
their fields, and the choice of experts is an important part of the message. Changing the experts' 
distributions blurs the distinction between expert and analyst in a way which is inimical to the classical 
model. Finally, basing an evaluation of a method on one variable from one study is precarious. 
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