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Abstract

This paper introduces new families of Sun-centered non-Keplerian or-
bits (NKOs) that are constrained to a three-dimensional, cylindrical or
spherical surface. As such, they are an extension to the well-known fami-
lies of displaced NKOs that are confined to a two-dimensional plane. The
cylindrical and spherical orbits are found by investigating the geometri-
cally constrained spacecraft dynamics. By imposing further constraints on
the orbit’s angular velocity and propulsive acceleration, the set of feasible
orbits is defined. Additionally, the phase spaces of the orbits are explored
and a numerical analysis is developed to find periodic orbits. The rich-
ness of the problem is further enhanced by considering both an inverse
square acceleration law (mimicking solar electric propulsion) and a solar
sail acceleration law to maintain the spacecraft on the three-dimensional
surface. The wealth of orbits that these new families of NKOs generate
allows for a range of novel space applications.

Introduction

By exploiting a continuous propulsive force, non-Keplerian orbits (NKOs) strongly
perturb the two- or three body problem, thereby creating a wealth of new or-
bits for the spacecraft motion about the central body. A particular subset of
non-Keplerian orbits in the two-body problem are the so-called displaced NKOs
where the continuous acceleration is applied perpendicular to the orbit plane
to displace the orbit away from the natural Keplerian orbit (McInnes, 1998,
2011; Mengali and Quarta, 2009). The dynamics of such two-body displaced
NKOs have been investigated before by considering the spacecraft’s equations
of motion in a rotating frame of reference to make the problem autonomous
(McInnes, 1997). Equilibrium solutions of these equations of motion then pro-
vide the sought for displaced NKOs and a transformation to an inertial frame
will subsequently show that the spacecraft executes a circular orbit displaced
away from the natural Keplerian orbit. The applications of such displaced
NKOs are abundant and their potential has been shown in a range of studies,
both Sun-centered and planet-centered. In the Sun-centered case, applications

1



include solar physics and one year orbits synchronous with the Earth for space
weather monitoring (McInnes and Simmons, 1992), while the planet-centered
case includes applications such as displaced geostationary orbits to guarantee
future geostationary slots for Earth observation and weather satellites (Baig and
McInnes, 2010; Heiligers et al, 2011), hovering above Saturn’s rings for high-
resolution imaging (Spilker, 2003), and NKOs displaced behind the Earth to
observe the structure of the geomagnetic tail (Macdonald et al, 2006).
The objective of this paper is to extend these families of displaced NKOs, which
are referred to in this paper as ”z-static” (after their constant out-of-plane dis-
placement), to families of NKOs that are confined to a cylindrical or spherical
surface centered around the Sun, leaving the planet-centered case for future in-
vestigations. Feasible orbits will be found by constraining the dynamics of the
spacecraft in a cylindrical or spherical coordinate system and imposing further
constraints on the orbit angular velocity and acceleration magnitude. Further-
more, the system’s phase space will be explored to identify new families of NKOs
and Poincaré maps will be used to demonstrate the possible existence of periodic
orbits. Finally, a numerical analysis is developed to find these periodic orbits.
In order to generate the cylindrical and spherical NKOs, two types of propul-
sion will be considered: one where the acceleration is considered proportional
to the Sun-spacecraft distance squared (mimicking solar electric propulsion
(SEP)) and one that follows an ideal solar sail acceleration law. While SEP
is a well-established propulsion technology with flight heritage on missions such
as JAXA’s Hayabusa (2003) (Kawaguchi et al, 2008), NASA’s Dawn mission
(2007) (Russell et al, 2004), and ESA’s GOCE mission (2009) (Muzi and Al-
lasio, 2004), solar sail technology is usually considered more far-term. Solar
sailing exploits the radiation pressure generated by solar photons reflecting off
a large, highly reflecting sail to produce a continuous thrust. Not constrained
by propellant mass, solar sail missions have huge potential, which is reflected in
ongoing solar sail activities. Recent advances include JAXA’s IKAROS mission
(2010) (Tsuda et al, 2011) and NASA’s NanoSail-D2 mission (2010) (Johnson
et al, 2011). Additionally, new solar sail initiatives are scheduled for the future,
including NASA’s Sunjammer mission1 and The Planetary Society’s LightSail-1
mission (Biddy and Svitek, 2012). The required SEP and solar sail technology
to enable the NKOs presented in this paper ranges from near-term to far-term,
depending on the selected values for the design parameters. In some cases,
a very high performance of the propulsion system is considered to illustrate
the concept, but could eventually be feasible when advanced, high-performance
technologies such as perforated sails become available (McInnes, 1999).
To introduce the novel cylindrical and spherical NKOs, the structure of the
paper will be as follows. First, the cylindrical case will be presented: the equa-
tions of motion, control law and constraints required to maintain a spacecraft
on a cylindrical surface will be obtained. Depending on a sign choice in the
differential equation for the out-of-plane motion, two families of orbits can be

1L’Garde - Sunjammer, http://www.lgarde.com/programs/space-propulsion/sunjammer,
Accessed 8 May 2013.
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distinguished, which will both be considered as well as the two different types of
propulsive accelerations. For each case, the set of feasible orbits will be derived,
example orbits will be shown and periodic orbits will be sought for. The paper
will continue with a very similar analysis for the spherical case and ends with
the conclusions.

1 Cylindrically constrained NKOs

Cylindrically constrained orbits can be found by considering the two-body equa-
tions of motion in a cylindrical coordinate system (ρ, θ, z) as shown in Figure
1. By assuming a central gravitational force field and an acceleration, a, in the
(ρ, z)-plane only, the equations of motion can be written as:

ρ̈− ρθ̇2 = − µ
r3 ρ+ a cos(α+ γ)

ρ2θ̈ + 2ρρ̇θ̇ = 0
z̈ = − µ

r3 z + a sin(α+ γ)

(1)

with µ the gravitational parameter of the central body (here the Sun), α the
acceleration angle with respect to the radial direction, also known as the cone
angle, and γ the elevation angle of the spacecraft.

To remain on a cylindrical surface, the following constraint on the projected
radius ρ is introduced:

ρ = constant→ ρ̈(t) = ρ̇(t) = 0 (2)

Furthermore, introducing the parameter ω̄ =
√
µ/ρ3, which equals the angular

velocity of a Keplerian orbit with radius ρ, the equations of motion reduce to:

cos(α+ γ) =
ρω̄2

a

(1 +

(
z

ρ

)2
)− 3

2

−
(ω
ω̄

)2

 (3)

θ̈ = 0→ θ̇ = constant = ω (4)

z̈ = −zω̄2

(
1 +

(
z

ρ

)2
)− 3

2

±a
√

1− cos2(α+ γ) (5)

Equation 3 provides the control law required for the spacecraft to stay on
a cylindrical surface; equation 4 shows that the in-plane angular velocity is
constant, which will be denoted by ω; and Eq. 5 describes the spacecraft’s
motion in the out-of-plane direction. With initial conditions z(0) = z0, ż(0) = 0,
this out-of-plane motion resembles a highly non-linear oscillator. Note that the
plus-sign in Eq. 5 has been replaced by a ±-sign as this generates two distinct
families of cylindrical orbits. As will become clear in the next few sections,
the minus-sign (which mirrors the acceleration in the (x, y)-plane) results in
cylindrical orbits that oscillate around the (x, y)-plane, i.e. −z0 ≤ z(t) ≤ z0,
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Figure 1: Definition of cylindrical reference frame.

while the plus-sign offers the possibility for the orbit to oscillate around a plane
parallel to the (x, y)-plane. The family of orbits associated with the minus-sign
will therefore hereafter be referred to as equatorial orbits, while the family of
orbits associated with the plus-sign will be referred to as displaced orbits. They
will first be considered for an inverse square acceleration law, followed by a very
similar analysis for an ideal solar sail acceleration law.

1.1 Inverse square acceleration law

The inverse-square acceleration law is adopted to mimic the acceleration pro-
duced by an SEP system. For the Sun-centered case, a rule of thumb is to assume
that the SEP acceleration scales with the distance to the Sun, r, squared:

a = βSEP
µ

r2
= βSEP ω̄

2ρ

(
1 +

(
z

ρ

)2
)−1

(6)

with βSEP a scaling factor. Note that, throughout the paper, the influence
of a changing spacecraft mass (due to propellant consumption) on the SEP
acceleration is neglected.

Using the acceleration in Eq. 6, feasible orbits are found only if −1 ≤
cos(α + γ) ≤ 1. Then, from Eq. 3, the following constraints on the in-plane
angular velocity, ω, and the scaling factor, βSEP , can be derived:

ω ≤ ωmax = ω̄

√√√√
βSEP

(
1 +

(
z

ρ

)2
)−1

+

(
1 +

(
z

ρ

)2
)− 3

2

(7)
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βSEP ≥ βSEP,min =

(
1 +

(
z

ρ

)2
)(1 +

(
z

ρ

)2
)− 3

2

−
(ω
ω̄

)2

 (8)

Since ρ, ω, ω̄ and βSEP are constant, both constraints vary only with the
out-of-plane displacement, z. Since z changes along the orbit, the values for
ω and βSEP have to be chosen carefully to make sure that the constraints are
satisfied throughout an entire oscillating motion in z. Since the minimum value
for the right-hand side of Eq. 7 occurs at the maximum value for z, i.e. zmax,
the constraint on ω should be evaluated at zmax. A similar reasoning can be
adopted for the constraint on the scaling factor, βSEP , in Eq. 8: the maximum
value for the right-hand side in Eq. 8 occurs at the minimum absolute value for
z, i.e. |z|min. The constraint on βSEP should therefore be evaluated at |z|min.
The actual values for |z|min and zmax depend on the family of orbits considered
(i.e. equatorial or displaced) as will become clear in the following.

1.1.1 Family of equatorial orbits

As indicated above, by considering the minus sign in Eq. 5, orbits originate
that oscillate around the (x, y)-plane such that −z0 ≤ z(t) ≤ z0. Then, it is
immediately clear that |z|min = 0 and zmax = z0. The constraints in Eqs. 7
and 8 therefore reduce to:

ω ≤ ωmax = ω̄

√√√√
βSEP

(
1 +

(
z0

ρ

)2
)−1

+

(
1 +

(
z0

ρ

)2
)− 3

2

(9)

βSEP ≥ βSEP,min = 1−
(ω
ω̄

)2

(10)

These constraints can be evaluated analytically, resulting in the region of
feasible equatorial, cylindrical orbits with an inverse square acceleration law
as shown in Figure 2 for ρ = 0.9 and z0 = 0.5, an example case that will be
considered throughout this paper. Note that the results in the figure and any
subsequent figures are made dimensionless by choosing the Sun’s gravitational
parameter µ to be unity and the unit of distance to be the astronomical unit.
The non-dimensional unit of time then becomes 1

2π years and an orbit with
angular velocity ω = 1 is synchronous with the Earth.

A first impression of the type of equatorial, cylindrically constrained NKOs
that are feasible is provided in Figure 3 for two particular values of the scaling
factor, βSEP = 0.32 (plots a-b) and βSEP = 0.44 (plots c-d). The figures
clearly show that these types of orbits oscillate around the (x, y)-plane and
move between z = z0 and z = −z0. The figure also includes the Poincaré maps
of the orbits, showing the system’s phase space after each full revolution (with
a maximum of 20 revolutions). These maps indicate that the orbits are quasi-
periodic, especially the orbit with βSEP = 0.44. To find true periodic orbits, a
numerical analysis is developed as described below.
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Figure 2: Feasibility region for equatorial, cylindrical NKOs with inverse-square
acceleration law and for ρ = 0.9 and z0 = 0.5.

In order to obtain true periodic orbits, a numerical scheme is developed in
which the initial conditions are integrated forward until the orbit crosses the
(x, y)-plane. The angular distance at this crossing is denoted by θ = θz=0. Due
to symmetry, a full period of the orbit extends over an angle, θP , which equals
θP = 4θz=0. This period can also be expressed as a fraction of a full revolution,
i.e. 4θz=0/2π, which equals the ratio of the out-of-plane angular velocity, ωz,
and the in-plane angular velocity, ω: ωz/ω = 4θz=0/2π. If this fraction equals
an irreducible fraction (e.g. 1

2 ,
2
3 ,

4
5 , etc.) the orbit is periodic, where the period

is given by the nominator of the irreducible fraction. An example is given in
Figure 4, which provides the ratio of out-of-plane and in-plane angular velocities
for ρ = 0.9 and z0 = 0.5 and for a range of in-plane angular velocities and scaling
factors. The black line in the figure represents one particular ratio, ωz/ω = 1

2 .
Each intersection of the curved lines and this black line is a true periodic orbit
with a period of one revolution. An example of such an orbit is given in Figure
4b, which corresponds to the black dot in Figure 4a. Through a fine grid search
over values for ω and βSEP and by using an interpolation scheme to accurately
determine the intersections between the ωz/ω-curves and the lines of constant
irreducible fractions, the periodic orbits as shown in Figure 5 are obtained. A
maximum period of 10 revolutions is considered, implying that all irreducible
fractions with a nominator of 1 to 10 are accounted for. The figure shows that
lines of equal periods exist in the feasibility region of the equatorial, cylindrical
orbits. Some examples of these true periodic orbits are shown in Figure 6, which
correspond to the black dots in Figure 5.
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Figure 3: Orbital plots and Poincaré maps for equatorial, cylindrical NKOs
with inverse-square acceleration law for ρ = 0.9, z0 = 0.5 and ω = 1. a-b)
βSEP = 0.32. c-d) βSEP = 0.44.
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Figure 4: Equatorial, cylindrical NKOs with inverse-square acceleration law for
ρ = 0.9 and z0 = 0.5. a) Ratio of out-of-plane and in-plane angular velocities. b)
Example periodic orbit (see black dot in plot a)) with ω = 0.6675 and βSEP =
1.3.

Figure 5: Periodic equatorial, cylindrical NKOs with inverse-square acceleration
law for ρ = 0.9 and z0 = 0.5. The black dots correspond to the orbits in Figure
6.
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Figure 6: Periodic orbits (see black dots in Figure 5) and Poincaré maps for
equatorial, cylindrical NKOs with inverse-square acceleration law for ρ = 0.9
and z0 = 0.5. a) ω = 0.991, βSEP = 1.198. b) ω = 0.885, βSEP = 0.547. c)
ω = 1.038, βSEP = 0.326. d) ω = 1.062, βSEP = 0.263.
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Figure 7: Definition of north and south displaced, cylindrical orbits.

1.1.2 Family of displaced orbits

When considering the plus-sign in Eq. 5, an additional family of cylindrical
NKOs orbits can be found: the family of so-called displaced, cylindrical or-
bits. This family will include the well-known z-static displaced NKOs that were
discussed in the introduction of this paper, since these z-static orbits can be con-
sidered to lie on a cylindrical surface. Furthermore, since these z-static NKOs
maintain a constant out-of-plane displacement, z(t) = z0 (i.e. z̈(t) = ż(t) = 0),
the required scaling factor, βSEP,z, can be found by setting z̈(t) = 0 in Eq. 5:

βSEP,z−static =

√√√√√√
(

1 +

(
z0

ρ

)2
)−1

(z0

ρ

)2

+

(ω
ω̄

)2
(

1 +

(
z0

ρ

)2
) 3

2

− 1

2


(11)
By substituting Eq. 11 into the constraints defined in Eqs. 7 and 8, it can

be shown that these z-static NKOs are feasible for all ω.
By increasing or decreasing βSEP with respect to βSEP,z−static, while still

satisfying the control law in Eq. 3, the family of displaced, cylindrical NKOs
can be found. As will become clear later, by increasing βSEP with respect
to βSEP,z−static, orbits that lie entirely above the z-static NKO from which
they bifurcate are created. This sub-family will be referred to as ’north orbits’,
see Figure 7 for an illustration. Contrary, by decreasing βSEP with respect to
βSEP,z−static, a sub-family of orbits that lie entirely below the z-static NKO
are created, which will be referred to as ’south orbits’, see again Figure 7. This
distinction has implications on the evaluation of the constraints in Eqs. 7 and
8, as will be explained hereafter.

As stated before, to evaluate the maximum allowable value for ω, the value
for zmax is required, which is known for south orbits (zmax = z0) but not for
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north orbits, since it is unknown a priori how much the north orbit will deviation
from its initial conditions. For north orbits, the constraint on ω can therefore
only be determined numerically through an integration of the orbit and by
determining whether or not the maximum allowable in-plane angular velocity
is exceeded. Instead, for south orbits (indicated by the subscript ’south’), the
constraint can be evaluated analytically as:

ωsouth ≤ ωmax = ω̄

√√√√
βSEP

(
1 +

(
z0

ρ

)2
)−1

+

(
1 +

(
z0

ρ

)2
)− 3

2

(12)

Contrary, to evaluate the minimum required value for βSEP , the value of
|z|min is required, which is known for north orbits (|z|min = z0), but can again
only be obtained through an integration of the orbit for south orbits. The ana-
lytical constraint on βSEP for north orbits (indicated by the subscript ’north’)
is:

βSEP,north ≥ βSEP,min =

(
1 +

(
z0

ρ

)2
)(1 +

(
z0

ρ

)2
)− 3

2

−
(ω
ω̄

)2

 (13)

The result of a combined analytical and numerical computation of the feasi-
bility region for displaced, cylindrical NKOs with an inverse square acceleration
law and for the case ρ = 0.9 and z0 = 0.5 is given in Figure 8, where the thick
red line dividing the feasibility region represents the value for βSEP,z−static. All
feasible orbits above this line (i.e. βSEP > βSEP,z−static) are north orbits, those
below the line are south orbits (i.e. βSEP < βSEP,z−static). Furthermore, the
figure includes the constraints in Eqs. 12 and 13 through the use of a dotted
and dashed white line, respectively. Note that the dashed line, which gives
the minimum value for βSEP for north orbits, lies below the thick red line for
βSEP,z−static, again indicating that z-static NKOs are feasible for all ω.

The feasibility region in Figure 8 can also be represented through the sys-
tem’s phase space, which gives an insight in the actual shape of the cylindrical
orbits, see Figure 9. The phase space gives the out-of-plane motion, z, and out-
of plane velocity, ż, for each combination of ω (on z-axis) and βSEP (through
the use of color). However, rather than using the absolute value for βSEP , Fig-
ure 9 expresses the scaling factor as a percentage deviation from βSEP,z−static,
∆βSEP . Therefore, for ∆βSEP = 0, βSEP = βSEP,z−static (i.e. the z-static
NKO case), which is represented by black dots on a grey transparent surface.
Thus, the phase spaces to the right of this surface are north orbits, for which
∆βSEP > 0, while phase spaces to the left of this surface are south orbits for
which ∆βSEP < 0. Some examples of both north and south orbits are provided
in Figure 10, where the black lines indicate the z-static NKOs from which the
cylindrical orbits bifurcate.

From the phase spaces in Figure 9 and the example orbits in Figure 10 it
becomes clear that north and south orbits move in a confined band above or
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the orbits in Figure 11.
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Figure 9: Phase spaces for displaced, cylindrical NKOs with inverse-square ac-
celeration law for ρ = 0.9 and z0 = 0.5. Colors indicate percentage deviation
from βSEP,z−static with a step size of 5%.
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Figure 10: Examples of displaced, cylindrical NKOs with inverse-square accel-
eration law for ρ = 0.9, z0 = 0.5 and ω = 1.0 and for different values for ∆βSEP .
Starting at top left plot and in clockwise direction: ∆βSEP = −40%,−15%, 50%
and 30%.
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below the z-static NKO, respectively. Furthermore, for some cases, the value
for βSEP can be decreased to such extent that the phase space crosses the
(x, y)-plane after which it immediately transforms into the phase space of an
equatorial orbit, i.e. −z0 ≤ z ≤ z0. This is, for example, the case for ω = 1.0 and
∆βSEP = −40% (see also the top left plot in Figure 10). The phase spaces finally
show that, the larger ∆βSEP , the farther the orbit deviates from the z-static
NKO, i.e. the wider the band covered on the cylindrical surface. Additionally,
the larger the value for ω, the narrower the band covered for a particular value
for ∆βSEP . This has an interesting application as will be explained at the end
of this chapter.

Finally, some of the orbits in Figure 10, e.g. the bottom right plot, again
suggest the existence of periodic orbits. To find true periodic orbits for the
displaced, cylindrical case, an approach very similar to the one described for
the equatorial, cylindrical orbits on page 5 is used. Only now, since the orbit
does not always cross the (x, y)-plane, the integration is not truncated upon
crossing the (x, y)-plane, but after one full oscillating motion. The ratio of out-
of-plane and in-plane angular velocities then becomes: ωz/ω = θP /2π, which is
used to establish the periodicity of the orbits. The result can be found in Figure
8, with some typical displaced, cylindrical orbits in Figure 11.

1.2 Solar sail acceleration law

The second type of acceleration that will be considered to generate cylindrical
NKOs, is an ideal solar sail acceleration. An ideal solar sail is a sail that is per-
fectly reflecting. The incoming solar photons are therefore specularly reflected
and the solar radiation pressure force acts perpendicular to the sail surface.
Following (McInnes, 1999) and the definitions in Figure 1, the ideal solar sail
acceleration can be written as:

a = βs
µ

r2
cos2 α = βsω̄

2ρ

(
1 +

(
z

ρ

)2
)−1

cos2 α (14)

with βs the sail lightness number, which is the ratio of the solar radiation
pressure acceleration and the solar gravitational acceleration, or can equivalently
be described as a function of the ratio of the spacecraft mass and the solar
sail area (McInnes, 1999). Substituting this acceleration into Eq. 3, gives the
required control law in implicit form:

cos(α+ γ) cos2 α = cos

(
α+ tan−1

(
z

ρ

))
cos2 α =

1

βs

(
1 +

(
z

ρ

)2
)(1 +

(
z

ρ

)2
)− 3

2

−
(ω
ω̄

)2

 (15)

To solve Eq. 15 for cosα, the roots of the following sixth order polynomial
need to be found:

15



−0.5 0 0.5 1

−0.2

−0.1

0

0.1

0.2

z

dz
/d

t

 

 
Revolution

0

5

10

15

20

(a)

−0.5 0 0.5 1

−0.2

−0.1

0

0.1

0.2

z

dz
/d

t

 

 
Revolution

0

5

10

15

20

(b)

−0.5 0 0.5 1

−0.2

−0.1

0

0.1

0.2

z

dz
/d

t

 

 
Revolution

0

5

10

15

20

(c)

−0.5 0 0.5 1

−0.2

−0.1

0

0.1

0.2

z

dz
/d

t

 

 
Revolution

0

5

10

15

20

(d)

Figure 11: Periodic orbits (see black dots in Figure 8) and Poincaré maps for
displaced, cylindrical NKOs with inverse-square acceleration law for ρ = 0.9
and z0 = 0.5. a) ω = 1.058, βSEP = 0.283. a) ω = 1.020, βSEP = 0.296. c)
ω = 0.915, βSEP = 0.508. d) ω = 0.850, βSEP = 0.703.
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x6 +
(
a2 − 1

)
x4 − 2abx3 + b2 = 0 (16)

with x = cosα, a = cos γ and b = 1
βs

(
1 +

(
z
ρ

)2
)((

1 +
(
z
ρ

)2
)− 3

2

−
(
ω
ω̄

)2)
.

From Descartes rule of signs, it follows that this polynomial has a maximum
of 2 positive and 2 negative real roots (Meserve, 1982). The negative roots can
be discarded, since for a solar sail acceleration law, the constraint on cosα is
tightened (i.e. cosα ≥ 0) due to the inability of a solar sail to generate an
acceleration component in the direction of the Sun. Only a maximum of two
positive real roots remain. However, since the original equation in Eq. 15 only
has 3 real roots, only one of the two positive real roots remains as a true solution
to Eq. 15.

1.2.1 Family of displaced orbits

For brevity, only the family of displaced, cylindrical orbits will be considered
for the solar sail acceleration law. Especially, since by significantly decreasing
βs with respect to the value for βs,z−static, the displaced orbits transform into
equatorial orbits, as was already demonstrated in Figure 9 for the inverse square
acceleration law. Only the plus-sign in Eq. 5 will thus be considered as well
as α ≥ 0, i.e. the cone angle is either zero or away from the radial direction
in counterclockwise direction. The condition α ≥ 0 is automatically satisfied
when evaluating cos−1 x since the information on the sign of α is not contained
in x. Evaluating cos−1 x will therefore by default return positive values for α.
Finally, the constraints −1 ≤ cos (α+ γ) ≤ 1 need to be taken into account.

Due to the lack in an explicit expression for cosα (and thus also for cos (α+ γ)),
the constraints on cos (α+ γ) cannot be expressed as an analytical formulation
for the maximum allowed in-plane angular velocity and the minimum required
sail lightness number. These constraints can therefore only be enforced within
the integration of motion, leading to a truncation of the integration when either
of the constraints is violated.

The results, in terms of the region of feasibility for displaced, solar sail
cylindrical orbits, is shown in Figure 12, again for the test case ρ = 0.9 and
z0 = 0.5 and with the thick red line dividing the feasibility region indicating the
lightness number, βs, required to maintain the z-static NKO (McInnes, 1999):

βs,z−static =

(
1 +

(
z0
ρ

)2
) 1

2

((
z0
ρ

)2

+

(
1−

(
ω
ω̄r

)2
)2
) 3

2

((
z0
ρ

)2

+

(
1−

(
ω
ω̄r

)2
))2

(17)

with ω̄r =
√

µ
r3 and r =

√
ρ2 + z2. Note that the sharp edge on the right side of

the feasibility region is very close to the maximum value for the in-plane angular
velocity for which the z-static NKO still exists, ωz−static,max. This limit is given
by (McInnes, 1999) as:
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Figure 12: Feasibility region including periodic orbits for displaced, cylindrical
NKOs with solar sail acceleration law for ρ = 0.9 and z0 = 0.5. The thick red
line dividing the feasibility region equals Eq. 17. The black dots correspond to
the orbits in Figure 13.

ωz−static,max ≤
√

µ

rρ2
(18)

Close to this limit, the required value for βs,z−static increases greatly, as the
thick red line in Figure 12 shows, and only lightness numbers close to these
large values for βs,z−static provide feasible cylindrical orbits, which far exceed
the interval considered for βs in Figure 12.

Finally, the same analysis as for the displaced, cylindrical orbits with an
inverse square law is applied to find true periodic orbits for the solar sail case.
The result is included in Figure 12 with some typical solar sail periodic orbits
in Figure 13.

1.2.2 Analysis in the (ρ, z0)-domain

The analyses in the previous subsections have assumed one particular combi-
nation of the projected radius, ρ, and the initial out-of-plane displacement, z0,
and shown the feasibility and periodicity of orbits in the (ω, βSEP )- or (ω, βs)-
domain. The reason for choosing ω and β as design parameters is the fact that,
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Figure 13: Periodic orbits (see black dots in Figure 12) and Poincaré maps for
displaced, cylindrical NKOs with solar sail acceleration law for ρ = 0.9 and
z0 = 0.5. a) ω = 0.943, βs = 0.530. b) ω = 0.897, βs = 0.492. c) ω = 0.765,
βs = 0.793. d) ω = 0.631, βs = 0.924.

19



to a certain extent, the constraints and feasibility can be derived analytically.
However, for mission design purposes, it might also be of interest to show pe-
riodic orbits in the(ρ, z0)-domain. Then, it becomes immediately clear where
periodic orbits exist with a particular in-plane angular velocity, ω, and propul-
sion technology, βSEP or βs. The result of such an analysis is shown in Figure
14. To limit the amount of results provided, only the solar sail case is consid-
ered and a hypothetical value for the lightness number of βs = 0.5 is selected.
Furthermore, the results are created for ω = 1, equalling the angular velocity
of the Earth around the Sun. Finally, the thick red line dividing the feasibility
region once again represents the z-static NKOs. The plot now clearly indicates
where periodic, cylindrical orbits exist that are synchronous with the Earth and
are enabled with a propulsion technology of βs = 0.5. These results in combina-
tion with the results presented in Figure 12 provide a complete overview of the
possible solar sail, displaced, cylindrically constrained non-Keplerian orbits.

A final consideration is devoted to the sensitivity in the initial conditions
of the periodic orbits. The figures throughout this chapter have demonstrated
clusters of periodic orbits in the (ω, β)- and (ρ, z0)-domains and in some partic-
ular cases even bifurcations where a line representing orbits with one particular
period branches of a line representing orbits with a different period. While an
example of the latter will be given in Chapter 2, Figure 15 zooms in on an area
of Figure 14 where the lines are heavily clustered. Although the difference in ρ
and z0 between the three periodic orbits is only 0.3% and 4.3% at maximum,
respectively, three completely different orbits with periods of 7, 9 and 2 exist
within that small domain. In these cases, precise insertion into the orbit as well
as close navigation during the orbit will be essential to guarantee that the sail
will stay on the targeted orbit.

1.3 Applications

A range of applications exist for the orbits presented throughout this chapter.
Generally, the same applications that were mentioned for the z-static NKOs
in the introduction of this paper also hold for the cylindrical orbits but at a
reduced required performance of the propulsion system: by definition, the family
of south orbits require a lower propulsion performance than the z-static NKO
from which they bifurcate (i.e. βSEP < βSEP,z−static and βs < βs,z−static) and
some of these orbits remain very close to the z-static NKO. A good example
is given in the top right plot of Figure 10, which allows for a 15% reduction
in the required scaling factor while remaining close to the z-static NKO. This
advantage occurs mainly for large values for the in-plane angular velocity, see
the phase spaces in Figure 9, where some of the darks lines on the left of the
grey transparent plane (for which β < βz−static) remain close to the dots on this
grey transparent plane that represent the z-static NKOs. Therefore, if a small
deviation from the z-static NKO is allowed, particular cylindrical NKOs could
reduce the required propulsion system performance compared to z-static NKOs.
More specifically, the cylindrical orbits allow to hover above the ecliptic plane
or above any of the planetary orbital planes. This provides a way to view the
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Figure 14: Feasibility region and periodic orbits in the (ρ, z0)-domain for dis-
placed, cylindrical NKOs with solar sail acceleration law for ω = 1.0 and
βs = 0.5. The thick red line dividing the feasibility region equals Eq. 17.
The black box refers to the detail in Figure 15.

Sun from out of the ecliptic or, by choosing the correct angular velocity such
that the cylindrical NKO is synchronous with any of the inner Solar System
planets, to view the planets from out of their orbital plane.

2 Spherically constrained NKOs

The approach to find spherically constrained NKOs is very similar to the one
taken to find cylindrically constrained orbits. However, now the equations of
motion are considered in a spherical coordinate system (r, θ, φ) as shown in
Figure 16. Again, assuming a central gravitational force field and an acceleration
in the (r, φ)-plane only, the equations of motion can be written as:

r̈ − rθ̇2 cos2 φ− rφ̇2 = − µ
r2 + a cosα

r cosφθ̈ + 2ṙθ̇ cosφ− 2rθ̇φ̇ sinφ = 0

rφ̈+ 2ṙφ̇+ rθ̇2 sinφ cosφ = ±a sinα

(19)

and to remain on a spherical surface, a constraint on the radius r is introduced:

r = constant→ r̈(t) = ṙ(t) = 0 (20)
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Figure 15: a) Detail of Figure 14. The black dots correspond to the orbits in
subplots b-d). b) ρ = 0.8114, z0 = 0.3657. c) ρ = 0.8110, z0 = 0.3670. d)
ρ = 0.8093, z0 = 0.3815.
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Figure 16: Definition of spherical reference frame.

A parameter similar to ω̄ as used for the cylindrical case is defined: ω̄r =√
µ/r3, which now equals the angular velocity of a Keplerian orbit with radius

r. The equations of motion then reduce to:

cosα =
r

a

(
ω̄2
r − θ̇2 cos2 φ− φ̇2

)
(21)

θ̈ = 2θ̇φ̇ tanφ (22)

φ̈ = −θ̇2 sinφ cosφ± a

r
sinα (23)

Equation 21 once again provides the required control law; equation 22 shows
that, contrary to the cylindrical case, the in-plane angular velocity, θ̇, is not
constant; and finally, with initial conditions φ(0) = φ0, φ̇(0) = 0, Eq. 23 again
resembles a highly non-linear oscillator and a ±-minus sign is included in front
of the acceleration term to generate the two families of orbits as discussed for
the cylindrical case: equatorial orbits (for the minus-sign) and displaced orbits
(for the plus-sign).

2.1 Inverse square acceleration law

Using the new definition for ω̄r, the inverse-square acceleration law can now be
written as:

a = βSEP
µ

r2
= βSEP ω̄

2
rr (24)

which is constant on the spherical surface and reduces the equations of motion
to:

cosα = 1
βSEP

(
1− 1

ω̄2
r

(
θ̇2 cos2 φ+ φ̇2

))
θ̈ = 2θ̇φ̇ tanφ

φ̈ = −θ̇2 sinφ cosφ± βSEP ω̄2
r sinα

(25)
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Again, feasible spherical orbits are found only if −1 ≤ cosα ≤ 1, which can
be translated into the following constraints on the in-plane angular velocity,
θ̇ (t) and the scaling factor, βSEP :

θ̇ (t) ≤

√
ω̄2
r (1 + βSEP )− φ̇2

cos2 φ
(26)

βSEP ≥ 1− 1

ω̄2
r

(
θ̇2 cos2 φ+ φ̇2

)
(27)

Due to the fact that the in-plane angular velocity is not constant throughout
the orbit, the evaluation of the constraints in Eqs. 26 and 27 is less straight
forward than for the cylindrical case. Especially Eq. 26 is difficult to evaluate
analytically since both the left-hand side and right-hand side change along the
orbit. General constraints as derived in Eqs. 7 and 8 for the cylindrical case
can therefore not be obtained. Instead, the evaluation of the constraints will be
investigated for each family of spherical NKOs separately, first for the equatorial
orbits and subsequently for the displaced orbits.

2.1.1 Equatorial orbits

For equatorial orbits, analyses have shown that the maximum value of the right-
hand side of Eq. 27 occurs at the initial condition, i.e. at φ = φ0 and φ̇ = 0.
Therefore, the minimum value for the scaling factor is given by:

βSEP ≥ βSEP,min = 1− θ̇2
0

ω̄2
r

cos2 φ0 (28)

and can be evaluated analytically. Instead, the minimum value of both sides
of Eq. 26 occur upon crossing the (x, y)-plane, i.e. at φ = 0, leading to the
following constraint on the in-plane angular velocity:

θ̇φ=0 ≤ θ̇φ=0,max =
√
ω̄2
r (1 + βSEP )− φ̇2

φ=0 (29)

Since both θ̇φ=0 and φ̇φ=0 cannot be known a priori, the constraint in Eq.
29 can only be enforced numerically by integrating the equations of motion and
truncating the integration as soon as the constraint is violated. The result, in
terms of the feasibility region for equatorial, spherical NKOs is shown in Figure
17a for the same case as in Section 1: ρ0 = 0.9 and z0 = 0.5 (i.e. r = 1.03
and φ0 = 0.16π). Since the in-plane angular velocity is not constant, the design
parameter on the x-axis is the initial angular velocity, θ̇0. Interesting to note
is the case where βSEP = 0 and θ̇0 = 1.095, which represents the circular
Keplerian orbit that lies on the spherical surface.

A first impression of the types of equatorial, spherically constrained NKOs
that are feasible is provided in Figure 17b) for two particular values of the scaling
factor. The figures again clearly show the oscillating behavior of these orbits
around the (x, y)-plane and hint at the possibility of finding periodic orbits.
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Figure 17: Equatorial, spherical NKOs with inverse-square acceleration law for
ρ0 = 0.9 and z0 = 0.5. a) Feasibility region. b) Orbits and Poincaré maps for
dθ/dt0 = 1, βSEP = 0.2 (top) and βSEP = 0.3 (bottom).
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True periodic orbits are once again sought for using an approach very similar
to the one used for equatorial, cylindrical orbits: the orbit is integrated forward
from its initial conditions until crossing the (x, y)-plane, which occurs at θ =
θφ=0. A full period of the orbit, P , would thus equal P = 4θφ=0, which can be
expressed as a fraction of a full revolution as 4θφ=0/2π and equals the ratio of
out-of-plane and in-plane periods: Pout/Pin = 4θφ=0/2π. Subsequent steps in
the approach are the same as for the cylindrical case: if the Pout/Pin-fraction
equals an irreducible fraction (e.g. 1

2 , 2
3 , 4

5 , etc.) the orbit is periodic, where the
period is given by the nominator of the irreducible fraction. A fine grid search
over values for θ̇0 and βSEP provides the periodic equatorial, spherical orbits as
shown in Figure 18, with some example periodic orbits in Figure 19.

Figure 18: Periodic equatorial, spherical NKOs with inverse-square acceleration
law for ρ0 = 0.9 and z0 = 0.5. The black dots correspond to the orbits in Figure
19.

2.1.2 Displaced orbits

When considering the plus-sign in Eq. 23, displaced, spherical NKOs can be
found. As for the cylindrical case, the analyses start from the z-static NKOs
which are part of the set of spherical NKOs. The required scaling factor for
these z-static NKOs, βSEP,z−static, can be found by setting φ̈(t) = φ̇(t) = 0 in
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Figure 19: Periodic orbits (see black dots in Figure 18) and Poincaré maps for
equatorial, spherical NKOs with inverse-square acceleration law for ρ0 = 0.9 and
z0 = 0.5. a) dθ/dt0 = 0.703, βSEP = 0.733. b) dθ/dt0 = 1.027, βSEP = 0.295.
c) dθ/dt0 = 1.066, βSEP = 0.175. d). dθ/dt0 = 1.072, βSEP = 0.123.
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Eq. 25:

βSEP,z−static =

√√√√(( ω

ω̄r

)2

sinφ cosφ

)2

+

(
1−

(
ω

ω̄r

)2

cos2 φ

)2

(30)

Note that, for the z-static NKOs, the in-plane angular velocity is constant and
can once again be denoted by ω. Furthermore, when considering the difference
in definition between ω̄ and ω̄r, Eq. 30 can be shown to equal Eq. 11.

Again, by deviating from βSEP,z−static, additional spherically confined or-
bits can be found: the sub-family of ‘north orbits’ are created by increasing
βSEP with respect to βSEP,z−static, while the sub-family of ‘south orbits’ are
created by decreasing βSEP with respect to βSEP,z−static. The evaluation of
the constraints in Eqs. 26 and 27 is different for each type of orbit, but is very
similar to the cylindrical case, as will be discussed below.

To obtain the minimum required value for βSEP , the constraint in Eq. 27
needs to be evaluated at φmin, which is known for north orbits (φmin = φ0)
but unknown for south orbits. The constraint on βSEP can therefore only be
determined analytically for north orbits and is evaluated numerically for south
orbits:

βSEP,north ≥ βSEP,min = 1− θ̇2
0

ω̄2
r

cos2 φ0 (31)

Furthermore, it appears that the constraint on θ̇(t) can be evaluated at φmax,
which is known for south orbits φmax = φ0, but is unknown for north orbits.
For south orbits, the constraint on θ̇(t) can therefore be determined analytically
through:

θ̇0,south ≤ θ̇0,max =
ω̄r
√

(1 + βSEP )

cosφ0
(32)

The resulting feasibility region is shown in Figure 20, which includes the
results of the periodicity analysis, and is shown as the system’s phase space in
Figure 21 (again for the case ρ0 = 0.9 and z0 = 0.5). In Figure 20, the constraint
in Eq. 31 is indicated with a dashed white line (again indicating that z-static
NKOs are feasible for all θ̇0), while the constraint in Eq. 32 is shown with a
dotted white line. Although the figure seems to suggest that, for north orbits,
no limit exists on the allowable value for βSEP , such a limit does exist, but only
for extremely large values for βSEP . Both figures again clearly demonstrate the
existence of north and south orbits and - in some particular cases - show the
transition of displaced orbits into equatorial orbits for small enough values of
βSEP . Finally, some example periodic orbits are provided in Figure 22.

2.2 Solar sail acceleration law

The final case that will be investigated considers the displaced, spherical orbits
with a solar sail acceleration law. Using the new definition for ω̄r, the solar sail
acceleration law can now be written as:

a = βs
µ

r2
cos2 α = βsω̄

2
rr cos2 α (33)
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Figure 20: Feasibility region including periodic orbits for displaced, spherical
NKOs with inverse-square acceleration law for ρ0 = 0.9 and z0 = 0.5. The thick
red line dividing the feasibility region equals Eq. 30. The dashed white line
equals Eq. 31, the dotted white line equals Eq. 32. The black dots correspond
to the orbits in Figure 22.

which reduces the equations of motion in Eqs. 21-23 to:

cosα = 3

√
1
βs

(
1− 1

ω̄2
r

(
θ̇2 cos2 φ+ φ̇2

))
θ̈ = 2θ̇φ̇ tanφ

φ̈ = −θ̇2 sinφ cosφ+ βsω̄
2
r cos2 α sinα

(34)

As for the cylindrically constrained orbits, only the family of displaced,
spherical NKOs will be considered for brevity.

2.2.1 Family of displaced orbits

The feasibility region can once again be derived from the constraint 0 ≤ cosα ≤
1 where the lower limit takes into account the inability of the solar sail to
generate a component of the acceleration in the direction of the Sun. This lower
limit results in a maximum value for the in-plane angular velocity for south
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Figure 21: Phase spaces for displaced, spherical NKOs with inverse-square ac-
celeration law for ρ0 = 0.9 and z0 = 0.5. Colors indicate percentage deviation
from βSEP,z−static with a step size of 10%.

orbits that is very similar to the constraint in Eq. 32:

θ̇0,south ≤ θ̇0,max =
ω̄r

cosφ0
(35)

This constraint is independent of the value for βs and equals the maximum
allowable in-plane angular velocity for a solar sail z-static NKO, see Eq. 18,
as well as the in-plane angular velocity of the Keplerian orbit that lies on the
spherical surface (as discussed on page 24).

Investigating the upper limit on cosα, it appears that for north orbits the
same constraint applies as in Eq. 31 for an inverse-square acceleration law:

βs,north ≥ βs,min = 1− θ̇2
0

ω̄2
r

cos2 φ0 (36)

The feasibility region in Figure 23 clearly indicates the constraints in Eqs.
35 and 36 with dotted and dashed white lines, respectively. Note that the
constraints on the minimum required lightness number for south orbits and the
maximum initial in-plane angular velocity for north orbits can once again only
be determined numerically. The latter constraint limits the maximum achievable
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Figure 22: Periodic orbits (see black dots in Figure 20) and Poincaré maps for
displaced, spherical NKOs with inverse-square acceleration law for ρ0 = 0.9 and
z0 = 0.5. a) dθ/dt0 = 0.382, βSEP = 0.987. b) dθ/dt0 = 1.225, βSEP = 0.542.
c) dθ/dt0 = 1.097, βSEP = 0.126. d). dθ/dt0 = 0.064, βSEP = 1.091.
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lightness number for north orbits, although Figure 23 might give the impression
that the lightness number can be increased unlimitedly. Furthermore, the thick
red line dividing the feasiblity region indicates the lightness number required to
maintain the solar sail on a z-static NKO. Finally, using the exact same approach
as for the other spherical orbits, periodic displaced, solar sail spherical orbits
can be found, see Figure 23, with some example periodic orbits in Figure 24.

Figure 23: Feasibility region including periodic orbits for displaced, spherical
NKOs with solar sail acceleration law for ρ0 = 0.9 and z0 = 0.5. The thick red
line dividing the feasibility region represents βs,z−static. The dotted white line
equals Eq. 35, the dashed white line equals Eq. 36. The black dots correspond
to the orbits in Figure 24.

2.2.2 Analysis in the (ρ0, z0)-domain

Finally, to complete the analyses, Figure 25 shows the solar sail, periodic, spheri-
cally constrained non-Keplerian orbits in the (ρ0, z0)-domain for dθ/dt0 = 1 and
βs = 0.5. Note that, although the initial in-plane angular velocity is equal to
that of the Earth, the orbit will not be Earth-synchronous throughout its orbit
since the orbit’s in-plane angular velocity is not constant. Combining the results
in Figure 25 with those in Figure 23 provides a complete overview of the set of
solar sail, periodic, spherically constrained NKOs.

32



−0.5 0 0.5 1 1.5

−0.4

−0.2

0

0.2

0.4

0.6

φ

dφ
/d

t

 

 
Revolution

0

5

10

15

(a)

−0.5 0 0.5 1 1.5

−0.4

−0.2

0

0.2

0.4

0.6

φ

dφ
/d

t

 

 
Revolution

0

5

10

15

(b)

−0.5 0 0.5 1 1.5

−0.4

−0.2

0

0.2

0.4

0.6

φ

dφ
/d

t

 

 
Revolution

0

5

10

15

(c)

−0.5 0 0.5 1 1.5

−0.4

−0.2

0

0.2

0.4

0.6

φ

dφ
/d

t

 

 
Revolution

0

5

10

15

(d)

Figure 24: Orbits (see black dots in Figure 23) and Poincaré maps for displaced,
spherical NKOs with solar sail acceleration law for ρ0 = 0.9 and z0 = 0.5. a)
dθ/dt0 = 0.939, βs = 0.518. b) dθ/dt0 = 0.601, βs = 0.962. c) dθ/dt0 = 1.005,
βs = 0.313. d). dθ/dt0 = 0.343, βs = 1.132.
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As observed for the cylindrical orbits in Section 1.2.2, also for the spher-
ical orbits regions of clustered periodic orbits and bifurcations exist in the
(dθ0/dt0, β)- and (ρ0, z0)-domains as clearly shown in the figures throughout
this chapter. While Figure 15 demonstrated the existence of cylindrical pe-
riodic orbits in a clustered region, Figure 26 shows the behaviour close to a
bifurcation point: a slight change in the initial out-of-plane displacement, z0,
can change the orbital period from 7 to 8. Again, it is clear that precise insertion
into the orbit as well as close navigation during the orbit is going to be essential
to guarantee that the sail will stay on the targeted orbit.
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Figure 25: Feasibility region and periodic orbits in the (ρ0, z0)-domain for dis-
placed, spherical NKOs with solar sail acceleration law for dθ/dt0 = 1.0 and
βs = 0.5. The black box refers to the detail in Figure 26.

2.3 Applications

As for the cylindrical orbits, the spherical NKOs enable the applications of the
z-static NKOs but at a reduced required performance of the propulsion system.
This is again clear from the phase spaces in Figure 21, where the dark lines on
the left side of the grey transparent plane remain close to the black dots on this
plane that represent the z-static NKOs. A good example is also given in Figure
22b. This orbit allows for a 27% reduction in the required scaling factor while
remaining close to the z-static NKO. This shows again that, if a slight deviation
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Figure 26: a) Detail of Figure 25. The black dots correspond to the orbits in
subplots b-c). b) ρ0 = 0.8097, z0 = 0.2675. c) ρ0 = 0.8097, z0 = 0.2662.
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from the z-static NKO is allowed, the spherical NKOs could significantly reduce
the required performance of the propulsion system compared to what is required
for a z-static NKO.
More specifically, by remaining at a constant radial distance from the Sun,
the spherically constrained orbits allow for some interesting solar observations.
The orbits that cover the poles of the spherical surface, such as the orbits in
Figure 22a and d and Figure 24b and d, would be highly suitable for solar polar
observation. Since the poles of the Sun cannot be viewed from conventional
orbits that traditionally lie in the ecliptic plane, these NKOs can provide new
insights in the interesting physical processes that occur at the poles of the Sun.
Alternatively, the orbits that cover a significant part of the surface, such as the
equatorial spherical orbits and, for example, the orbit in Figure 22c, would be
highly suitable for a three-dimensional mapping of the features and structures
of the Sun.

Conclusions

As an extension to the well-known families of displaced non-Keplerian orbits
(NKOs) that are confined to a two-dimensional plane (also referred to as ”z-
static” NKOs), this paper has introduced Sun-centred NKOs that are con-
strained to a three-dimensional cylindrical or spherical surface. To maintain
these orbits, the use of two types of propulsion technologies have been investi-
gated: an inverse square acceleration law (mimicking solar electric propulsion)
and an ideal solar sail acceleration law. For both types of orbits and both types
of propulsion, the geometrically constrained equations of motion have been de-
rived and by setting further constraints on the in-plane angular velocity and
the acceleration magnitude, sets of feasible orbits have been defined. Within
these sets, true periodic orbits have been found that can serve a range of space
applications: those orbits that allow a reduction in the acceleration magnitude
with respect to the z-static NKO from which they bifurcate, but stay close
to this z-static NKO, may provide a viable alternative to the z-static NKO as
less demanding propulsion technology is required. Furthermore, spherical orbits
that maintain a position high on the spherical surface are considered to be of
interest for solar polar observation, while those that cover a significant part of
the spherical or cylindrical surface could serve for a 3D mapping of the features
and structures of the Sun.

Acknowledgements

This work was funded by the European Research Council Advanced Investigator
Grant-227571: Visionary Space Systems: Orbital Dynamics at Extremes of
Spacecraft Length-Scale.

36



References

Baig S, McInnes C (2010) Light-levitated geostationary cylindrical orbits are
feasible. Journal of Guidance, Control, and Dynamics 33(3):782–793

Biddy C, Svitek T (2012) LightSail-1 solar sail design and qualification. In:
Proceedings of the 41st Aerospace Mechanisms Symposium, Pasadena, CA

Heiligers J, Ceriotti M, McInnes C, Biggs J (2011) Displaced geostationary
orbit design using hybrid sail propulsion. Journal of Guidance, Control, and
Dynamics 34(6):1852–1866

Johnson L, Whorton M, Heaton A, Pinson R, Laue G, Adams C (2011) Nanosail-
D: A solar sail demonstration mission. Acta Astronautica 68:571–575

Kawaguchi J, Fujiwara A, Uesugi T (2008) Hayabusa - its technology and science
accomplishment summary and Hayabusa-2. Acta Astronautica 62(1011):639–
647

Macdonald M, McInnes C, Alexander D, Sandman A (2006) Geosail: Exploring
the magnetosphere using a low-cost solar sail. Acta Astronautica 59:757–767

McInnes C (1997) The existence and stability of families of displaced two-body
orbits. Celestial Mechanics and Dynamical Astronomy 67(2):167–180

McInnes C (1998) Dynamics, stability, and control of displaced non-Keplerian
orbits. Journal of Guidance, Control, and Dynamics 21(5):799–805

McInnes C (1999) Solar Sailing: Technology, Dynamics and Mission Applica-
tions. Springer-Praxis Books in Astronautical Engineering, Springer-Verlag,
Berlin

McInnes C (2011) Displaced non-keplerian orbits using implisve thrust. Celestial
Mechanics and Dynamical Astronomy 110(3):199–215

McInnes C, Simmons J (1992) Solar sail halo orbits. Part I - heliocentric case.
Journal of Spacecraft and Rockets 29(4):466–471

Mengali G, Quarta A (2009) Non-keplerian orbits for electric sails. Celestial
Mechanics and Dynamical Astronomy 105(1-3):179–195

Meserve B (1982) Fundamental Concepts of Algebra. Dover Publications, New
York

Muzi D, Allasio A (2004) Goce: The first core Earth explorer of ESA’s Earth
observation programme. Acta Astronautica 54(3):167–175

Russell CT, Coradini A, Christensen U, De Sanctis MC, Feldman WC, Jaumann
R, Keller HU, Konopliv AS, McCord TB, McFadden LA, McSween HY, Mot-
tola S, Neukum G, Pieters CM, Prettyman TH, Raymond CA, Smith DE,
Sykes MV, Williams BG, Wise J, Zuber MT (2004) Dawn: A journey in
space and time. Planetary and Space Science 52(56):465–489

37



Spilker T (2003) Saturn ring observer. Acta Astronautica 52:259–265

Tsuda Y, Mori O, Funase R, Sawada H, Yamamoto T, Saiki T, Endo T,
Kawaguchi J (2011) Flight status of IKAROS deep space solar sail demon-
strator. Acta Astronautica 69(9-10):833–840

38


