Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A 3D-printed miniature gas cell for photoacoustic spectroscopy of trace gases

Bauer, Ralf and Stewart, George and Johnstone, Walter and Boyd, Euan and Lengden, Michael (2014) A 3D-printed miniature gas cell for photoacoustic spectroscopy of trace gases. Optics Letters, 39 (16). pp. 4796-4799. ISSN 0146-9592

[img]
Preview
PDF (OL-template_PAS_revised1)
OL_template_PAS_revised1.pdf - Accepted Author Manuscript

Download (3MB) | Preview

Abstract

A new methodology for the development of miniature photoacoustic trace gas sensors using 3D printing is presented. A near-infrared distributed feedback (DFB) laser is used together with a polymer based gas cell, off the shelf fiber optic collimators and a microelectromechanical system (MEMS) microphone to measure acetylene at 1532.83nm. The resonance behavior of the miniature gas cell is analyzed using a theoretical and experimental approach, with a measured resonance frequency of 15.25kHz and a Q-factor of 15. A minimum normalized noise equivalent absorption of 4.5·10-9Wcm-1Hz-1/2 is shown together with a 3σ detection limit of 750 parts per billion (ppb) for signal averaging times of 35seconds. The fiber coupled delivery and miniature cost-effective cell design allows for use in multi-point and remote detection applications.