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Abstract

Temperature is hypothesized to contribute to increased pathogenicity and virulence of many marine diseases. The sea louse
(Lepeophtheirus salmonis) is an ectoparasite of salmonids that exhibits strong life-history plasticity in response to
temperature; however, the effect of temperature on the epidemiology of this parasite has not been rigorously examined.
We used matrix population modelling to examine the influence of temperature on demographic parameters of sea lice
parasitizing farmed salmon. Demographically-stochastic population projection matrices were created using parameters
from the existing literature on vital rates of sea lice at different fixed temperatures and yearly temperature profiles. In
addition, we quantified the effectiveness of a single stage-specific control applied at different times during a year with
seasonal temperature changes. We found that the epidemic potential of sea lice increased with temperature due to a
decrease in generation time and an increase in the net reproductive rate. In addition, mate limitation constrained
population growth more at low temperatures than at high temperatures. Our model predicts that control measures
targeting preadults and chalimus are most effective regardless of the temperature. The predictions from this model suggest
that temperature can dramatically change vital rates of sea lice and can increase population growth. The results of this study
suggest that sea surface temperatures should be considered when choosing salmon farm sites and designing management
plans to control sea louse infestations. More broadly, this study demonstrates the utility of matrix population modelling for
epidemiological studies.
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Introduction

Many marine pathogens are capable of causing dramatic

population-, community- and ecosystem-level shifts and the

patterns of infection are frequently associated with temperature

[1], [2], [3], [4], [5]. In particular, high temperatures are often

associated with increased frequency or severity of infection, as a

result of altered development and survival of the pathogen,

physiological changes in the host and range expansions [1], [2],

[6], [7], [8]. Understanding the role that temperature plays in the

epidemiology of marine diseases is important for predicting and

potentially mitigating infestations and may be important for

forecasting disease risk in a climate change context.

Quantifying the influence of temperature on infections in

marine environments is challenging. For many marine pathosys-

tems, there is a lack of baseline data on how temperature

influences epidemiological patterns and those that exist are often

confounded with other influential water quality information (e.g.,

salinity, circulation) [1], [4]. In addition, temperature can

influence the host and the pathogen separately, and these effects

may differ among life history stages. In many cases only some of

these interactions are understood or the etiologic agent of disease is

unknown [1], [2], [6], [9]. Despite these challenges, water

temperature often follows well-defined seasonal patterns and its

effects should be predictable.

Open-pen aquaculture may offer a unique opportunity to

understand the role of temperature on marine diseases. In

particular, because these systems often control spatial and

temporal variation in host densities, they can be used to examine

the role of temperature in influencing pathogen life history and

virulence. One case where temperature may be especially

influential is that of sea louse (Lepeophtheirus salmonis) infestations

on salmonids. Sea lice are an ectoparasite of farmed and wild

salmonids (Atlantic salmon (Salmo salar), steelhead (Oncorhynchus

mykiss), and Pacific salmon (Oncorhynchus spp.)) and infestations have

been associated with declines in returns of adult wild salmonids

[10], [11], [12]. Sea lice have very plastic life history responses to

temperature. For example, the generation time of sea lice has been

estimated to range between 50 days at 12uC and 114 days at 7uC
[13], suggesting that infestations may increase in response to
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warmer temperatures. Nonetheless, the role that temperature

plays in sea louse infestations is not clear. While controlled

laboratory manipulations consistently find strong effects of

temperature on sea louse development [14], effects of temperature

on the population dynamics of sea lice are only detectable in some

field data [15], [16], [17].

Many fish farms experience substantial economic losses due to

morbidity of infested stock as well as the use of expensive

chemotherapeutants to control sea lice [18]. A number of methods

have been pursued within the salmon industry to control sea lice

infestations on farms. These include adoption of integrated pest

management approaches in which management areas, defined by

hydrological boundaries, are fallowed periodically to break the sea

lice reinfection cycle and all salmon in the management area are

restricted to a single age cohort to avoid infection between age-

classes. In addition to these practices, chemotherapeutant treat-

ments are often necessary to control sea lice [19], [20]. While they

have the potential to be very effective at reducing densities of

attached sea lice (chalimus and mobiles) [21], [22], the success

rates of chemical treatments often vary and in some cases

numerous treatments are required to control sea louse populations

[20]. Additional concerns with chemical treatments arise because

they can be expensive [18], are stressful to salmon [23], have

potentially detrimental environmental impacts [24], can be

hazardous to the workers that dispense them and are proving to

be less effective over time because sea lice have evolved resistance

[20] [25]. Different treatments target different stages of sea lice

and while both temperature and the stage targeted may influence

the efficacy of a treatment, the role of these factors has not been

throroughly investigated.

A range of modelling techniques have been used to evaluate sea

louse population growth over time, including delay differential

equation models [26], [27], individual-based models [28],

advection-diffusion models [29], system dynamic models [30],

and stochastic Monte Carlo simulation models [31]. While many

of these models include temperature, we are only aware of one that

has explicitly examined the effect of temperature variation on

population demography and vital rates [14].

Matrix population models provide a useful tool for exploring the

interactions between life history, temperature and population

demography. Matrix population models can be manipulated to

incorporate life history variation, stochasticity, environmental-

dependencies and population feedbacks (e.g. density dependence)

[32]. Moreover, analytical tools are well-developed for under-

standing the contribution of all of these factors to population

demographics [32]. For example, elasticity analysis can be used to

examine the effect of proportional changes to contributions of life

stages (defined as matrix elements) on population growth, while

sensitivity analysis can be used to examine the effect of absolute

changes in life stage properties on population growth. The

elasticities of population growth to changes in matrix elements

can be used to predict the effectiveness of stage-targeted control

methods, while the sensitivities of population growth to changes in

matrix elements can provide insight in predicting how a

population will evolve in response to selection at a specific life

stage [32]. Comparison of elasticities and sensitivities of matrices

constructed for the same organism at different temperatures can

be used to understand how temperature-induced life history

plasticity may alter population demographics. While population

matrix models have a long history of use in conservation biology

and pest management [33], [34], [35], they have rarely been used

to understand the epidemiology of marine pathogens or parasites

[36].

In this study we use stochastic matrix population models to

understand the influence of temperature on the population

growth, reproduction and demography of sea lice (L. salmonis) on

farmed Atlantic salmon. We use sensitivity and elasticity analyses

to understand the contribution of each life stage to population

growth. We also examine how density-dependent mating and the

rate that larval sea louse attach to hosts influence these patterns.

Finally we evaluate these results in terms of the effect of

temperature on population growth and effective control of sea lice.

Materials and Methods

Matrix Construction
To evaluate the effects of temperature, seasonality and the host

attachment rate on sea louse demography, we created stage-

structured population projection matrices (PPM) for female sea lice

based on parameters from the literature. The model does not

explicitly include Atlantic salmon hosts because they are not

expected to influence the epidemiology of sea lice. This is because

they exhibit little immune response to sea lice [37] and are

maintained at constant densities throughout the salt water

production phase.

L. salmonis transition through nine recognised life stages [38].

After hatching from the egg, the sea louse goes through three

unattached stages during which it does not feed: nauplii (2 stages)

and copepodid. Once the copepodid finds a host, it develops

through two chalimus stages, two preadult and one adult stage. In

our model, we reduced the life cycle to seven stages that reflect

biologically important transitions: egg, larvae (consisting of nauplii

I and II and copepodid), chalimus (stages I and II), preadult (I and

II) and three adult phases which will be referred to as gravid I,

between-clutch and gravid II (Figure 1). The three adult phases are

separated here because they differ in terms of fecundity.

Transitions from stage to stage occur in one direction, with the

exception that females can transition from gravid II to between-

clutch, and then back to gravid II, reflecting observations that

females can produce up to 11 successive pairs of egg strings [39].

The population projection matrix represents daily transitions and

operates on the life stage state vector with elements [egg, larvae,

chalimus, preadult, gravid I, between-clutch and gravid II]

(Figure 1).

Entries on the diagonal (Pi) indicate the proportion of

individuals remaining in a stage, entries on the sub- and super-

diagonal (Gi) indicate the proportion of individuals developing into

a new stage and F5 and F7 indicate the fecundity of gravid I and

gravid II adult females, respectively. P2 and G2 are a function of

the rate that sea lice attach to the host (c, described below), and G5

and G6 and G7 are a function of egg hatching and development

(described below). The remaining Pi and Gi elements, together

with the Fi elements, are defined as shown:

Pi~1{
1

dij
� (1{mi),

for i~f1,3-6g,j~iz1

for i~7,j~6

�
ð1Þ

Gi~(
1

dij
) � (1{mi), ffor i~f1,3,4g,j~iz1 ð2Þ

Fi~
vi

2
� w, i~f5,7g ð3Þ

where di j = time to develop from stage i to stage j, mi =mortality

rate at stage i, and vi = number of viable eggs in the clutch

Population Matrix Models of Marine Ectoparasites
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produced at stage i. This number is multiplied by the probability of

mating (Q) and divided by two because the matrix only considers

females and assumes a 1:1 sex ratio.

Parameters
Developmental transitions. With the exception of copepo-

dids, developmental transitions of sea lice were temperature-

dependent. We parameterized developmental times in our model

based on a review by Stien et al. 2005 [14] of existing data on

temperature-dependent development in L. salmonis (Table 1). This

review uses developmental rates across a temperature range to

parameterize a modified Belahrádek equation [40]:

tij(T)~(
b1ij

(T{10zb1ijb2ij)
)2 ð4Þ

where tij is the minimum required developmental time for

individual i in stage j at temperature T. b1ij is a shape parameter

and b2ij
22 is the average for t at 10uC. Variation in developmental

rates was incorporated by randomly selecting values for b1ij and

b2ij from a normal distribution with mean and standard deviation

taken from [14]. A stage-specific constant, nj, was added to this

temperature-dependent estimate, to represent additional time

beyond the minimum developmental time needed to make

developmental transitions. Total developmental time (dij) of

individual i at stage j is:

dij~tijznj ð5Þ

Values of n were from [14] and the developmental rates were the

inverse of the developmental times. There is no evidence that

copepodid developmental rates are temperature-dependent, so all

copepodids in this model developed in 4.6 days, the mean value as

estimated by [14]. The developmental rate of larvae was

calculated as the inverse of the sum of nauplii and copepodid

developmental times.

Survival. Survival estimates (1-mi) for all stages except larvae

were stochastically drawn from a triangular distribution defined by

the minimum, maximum and most probable survival times based

on data from [41] (Table 2). As with many invertebrates, there is

little evidence that survival of sea lice is directly dependent upon

temperature [14], [26].

Figure 1. Diagram of stage-structured population projection matrix that is used in simulations. Pi indicates the probability of staying in a
stage, Gi indicates the probability of transitioning to another stage and Fi indicates fecundity. Survival and attachment of free-swimming larvae are a
function of the rate that they attach to hosts (c) and fecundity is a function of the probability of mating (Q).
doi:10.1371/journal.pone.0088465.g001

Table 1. Parameters used for matrix model calculations
(equations 1–8).

Life Stage b1 (Standard Error) b 2 (Standard Error) n

Eggs 41.98 (2.85) 0.338 (0.012) 2

Nauplii 24.79 (1.43) 0.525 (0.017) 0

Chalimus 74.7 (33.64) 0.236 (0.007) 0.85

Pre-adult Female 67.47 (20.36) 0.177 (0.006) 0.34

Parameters used in equations 4 and 5 to estimate developmental rates of each
stage (from [14]).
doi:10.1371/journal.pone.0088465.t001

Table 2. Survival rates for each life stage of the sea louse.

Parameters Mean Lower Upper Source

Egg Viability 0.90 0.75 0.96 [39]

Nauplii Survival (daily) 0.83 [14]

Chalimus Survival
(daily)

0.992 0.98 0.997 [41]

Preadult Survival
(daily)

0.965 0.953 0.98 [41]

Adult Survival (daily) 0.965 0.904 0.997 [41]

With the exception of nauplii, survival estimates for individuals were randomly
drawn from a triangular distribution with lower and upper values shown.
doi:10.1371/journal.pone.0088465.t002

Population Matrix Models of Marine Ectoparasites
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Survival of larvae was the product of nauplii survival (calculated

as above) and copepodid survival. Survival of copepodids depends

upon the attachment of copepodids to a host, a process which is

sensitive to local host densities and abiotic factors including

currents and salinities [15], [17], [42]. Daily survival rates of

copepodids (Sc) depend on the attachment rate (c) as well as the

development time (dc) such that:

Sc~c
1
dc ð6Þ

Since the attachment rate of copepodids varies considerably in

nature, we simulated scenarios with several different values for c
(described in Analyses).

Fecundity. Sea lice reproduce sexually and females have two

external egg strings in each clutch that are attached to them until

hatching. Egg string production and hatching are synchronized on

an individual louse. Estimates of egg viability, clutch size and time

to hatching were based on data from [39]. Sea lice are estimated to

have 152 6 31 (mean 6 SD) eggs per egg string in the first clutch

and 296 6 100 eggs per egg string in subsequent clutches [39].

Estimates of clutch size were chosen from these normal

distributions and multiplied by two to account for both egg

strings. The number of eggs produced was then multiplied by the

estimated viability (Tables 1 and 2) and divided by two because the

model only tracks female members of the population. There is

little evidence for an effect of temperature or clutch order on egg

viability [39].

Because the first clutch of eggs is substantially smaller than

subsequent clutches we divided adult female stages into three

parts, gravid I to represent the first extrusion of eggs (represented

by F5), gravid II to represent subsequent extrusions of eggs

(represented by F7) and between-clutch to represent the time

between the extrusion of eggs. After completing the gravid I stage

(P5), individuals will alternate between the between-clutch and

gravid II stages represented by P6, P7, G6 and G7 in the PPM.

The time spent between clutches was the sum of the time

needed for eggs to develop after egg string extrusion (degg-1) and

the time between the hatching of one clutch and the release of the

next egg string (f). Both of these are temperature-dependent. The

latter parameter was estimated with the following relationship:

z~max (1,{1:2Tz19:64) ð7Þ

This equation is based on hatching times at 7.2uC and 12.2uC
[39] and the observation that the shortest time between clutches,

which is observed at temperature . 15uC, is ,24 hours [43]. Egg

extrusion (g)(e.g., the time in the gravid I or gravid II stages) was

set at one day [43]. G5, G6 and G7 are therefore defined as:

G5~G7~
1

g
� (1{madult) ð8Þ

G6~
1

fzdeggs{g
� (1{madult) ð9Þ

Density-dependence. Recent models of sea louse mating

suggest that reproduction in sea lice is limited by mate availability

when the abundance of sea lice is low [31], [44]. We incorporated

this density-dependent effect, also called depensation or an Allee

effect [32], in some iterations of the model by reducing the

fecundity by the probability of mating (w), which was calculated

based on the ratio of adult sea lice to hosts.

To include density-dependent mating in our model, we used a

variation of the model presented by [45]. The model assumes

parasites are distributed on hosts according to the negative

binomial distribution. This distribution is suited for dioecious

parasites that aggregate together. It simulates the probability that a

female will mate (w) as a function of the mean number of adult lice

on a host (m, calculated here as twice the number of adult females,

therefore assuming and equal sex ratio) and a parameter

describing overdispersion of sea lice among hosts (k) such that:

k~
m

VMR{1
ð10Þ

where VMR is the variance to mean ratio of adult sea lice on hosts.

Because sea lice are polygamous [46], we used a variation of this

model that assumes that parasites coaggregate and that mating

occurs for all females when there is at least one male on a host (i.e.

complete promiscuity):

w(m,k)~1{(1{a)1zk(1{
a

2
){1{k ð11Þ

where a= m/(m+k). The model assumes an equal sex ratio [47].

In the special case where k??, VMR = 1 and the lice assume a

Poisson distribution among hosts with probability of mating

simplifying to:

w(m)~1{e
{m

2 ð12Þ

For models where this density-dependent effect was included,

fecundity estimates F5 and F7, were multiplied by ?? .

Analyses
We calculated PPMs for a number of relevant scenarios,

including a range of fixed temperatures and larval attachment

rates, density-dependent mating, and yearly temperature profiles

(described below). Depending upon the scenario, we examined

some or all of the following demographic parameters: population

growth (l), reproductive rate (R0), generation time, and the

sensitivity and elasticity of population growth to changes in matrix

elements.

In our equations, l was equal to the rate of population change

over a day (i.e. the dominant eigenvalue of the matrix A). R0 was

equal to the average number of offspring by which an egg will be

replaced within its lifetime (i.e. the rate by which the population

increases from one generation to the next) and generation time

was equal to the time necessary to produce the number of offspring

predicted by R0 [32]. Population growth is stable when l= 1,

decreases for l , 1 and increases for l . 1. Sensitivity was

calculated as the effect of absolute changes to matrix elements on

the population growth rate,

sij~
Ll
Laij

� �
ð13Þ

while elasticities were calculated as the effect of proportional

changes in matrix elements on the population growth rate,

Population Matrix Models of Marine Ectoparasites
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eij~
L log l
L log aij

� �
ð14Þ

where aij indicates the matrix element [32].

In addition to the above analyses we performed a number of

simulations to examine how various starting conditions affected

population dynamics. All analyses were implemented in R (v.

2.15.0) using the ‘popbio’ package [48]. Details about how

stochastic effects were included into each analysis are included

below. Matrices showing means and standard deviations for all

fixed temperature scenarios are in supplemental appendix S1.

Annotated R-code is available in supplemental code S1, S2, S3,

S4, S5, S6, S7 and S8.

Effects of fixed temperatures and larval attachment

rates. In order to understand the effect of temperature on

population growth rate, we calculated the matrix A for the

following water temperatures, 4uC, 8uC, 12uC, 16uC and 20uC.

These temperatures are within the range typically experienced by

sea lice [49]. While temperatures colder than 4uC are also likely to

occur in some locations (e.g. [17]), there are no data available to

parameterize life history traits at these values.

The proportion of copepodids that attach to a host varies

considerably in nature as a function of host behaviour and water

salinity, hydrodynamics and light availability [50], [51], [52].

While there is some evidence that temperature may influence

attachment rates of copepodids, it was not conclusive enough to

include in the model [50], [51]. In order to measure how this

variation influences sea lice populations, for each specific

temperature matrix, we calculated the matrix A with different

values for the attachment rate (c= 0.001, 0.01, 0.1, 0.5, 0.9), at

each of the fixed temperature profiles.

Fixed temperature scenarios included demographic stochasticity

where variation can be estimated from the literature. Individual

louse developmental, survival and fecundity estimates in the PPM

were calculated independently in each run (see descriptions above)

and clutch sizes were drawn from normal distributions (described

in developmental transitions). Survival estimates were drawn from

triangular distributions (described in survival). For all fixed

scenarios, we calculated the matrix A 1000 times to create a

distribution of matrices which we used to calculate the mean and

95% confidence intervals for the intrinsic population growth rate,

the net reproductive rate and the generation time.

We calculated the sensitivity and elasticity of l to matrix

elements. Graphical displays of these results show the sums of

elasticities or sensitivities associated with a life stage. For example,

the sensitivity of l to larval sea lice is the sum of the sensitivity of

G2 and P2 and the elasticity of l to fecundity is the sum of the

elasticities of l to F5 and F7. Matrices of means and standard

deviations for elasticities and sensitivities in all fixed temperature

scenarios and larval attachment rates are shown in supplemental

appendix S2 and S3.

See supplemental appendix S4 for calculations of the proportion

of individuals at each life stage at equilibrium and simulations to

determine the time until equilibrium was reached (Figures S1 and

S2 in supplemental appendix S4).

Effects of temperature on density-dependent

mating. Density-dependent effects on population growth result

in nonlinear models and the analyses described above are

therefore not applicable. In order to understand how temperature

and the larval attachment rate described above influence density-

dependent mating, we ran simulations using density-dependent

terms for fecundity elements F5 and F7 of the projection matrix. In

each simulation we began with a population of 0.1 adult gravid I

females per host. The model was simulated at the constant

temperatures described above until the threshold of 3 adult female

lice per host was crossed. This threshold was chosen because at this

abundance mating success is nearly 95% for all models (4A) and

mate limitation begins to have negligible effect on population

growth. This was simulated by calculating matrix values associated

with each life stage 100 times and using the means of these values

for VMR= 1, 1.3 and 2 as well as in cases where density-dependent

mating was not modelled.

Effects of seasonality. Understanding the demographic

properties of sea louse populations at a single temperature is

useful for developing a conceptual understanding of the effect of

temperature; however, sea lice live in environments that typically

experience substantial seasonal temperature variation. It is unclear

how variation from ‘typical’ seasonal patterns might influence

population growth rates. Therefore, we evaluated the intrinsic

population growth rate across seasons for a variety of temperature

scenarios. The baseline temperature profile was a sine curve fitted

to a mean of temperature data collected at 33 fish farm sites in

Scotland over a 5 year period [53]. We varied this temperature

profile to create the following scenarios: cold and warm years (all

temperatures 2uC below or above baseline), a year with cold

winters (winter minimum is 2uC below baseline), a year with warm

summer (summer maximum is 2uC above baseline), a year of

‘more seasonal’ temperatures (same mean temperature, but

minimum and maximum temperatures are 2 degrees more

extreme than in the baseline scenario) and a year of ‘most

seasonal’ temperatures (same mean temperature, but the mini-

mum winter and maximum summer temperatures are 4.5uC more

extreme than in the baseline scenario). In all seasonal scenarios, we

started the simulation in spring (i.e. day 1 began 120 days into the

calendar year).

We calculated yearly PPMs for each temperature profile and

each of five larval attachment rates (c= 0.001, 0.01, 0.1, 0.5, 0.9).

To do this we constructed a PPM for each day (Bday) based on c
and the predicted temperature for that day. An overall PPM for

the year was calculated by multiplying PPMs such that:

A~B365 � B364 � ::::::B2 � B1 ð15Þ

This process was repeated 1000 times and the intrinsic

population growth (ldaily 6 95% confidence intervals) was

calculated from the resulting A matrices.

Effects of treating different life stages across

seasons. Chemical and biological treatments to control sea lice

target different life stages are used in response to elevated sea louse

abundances. Instead of simulating specific types of treatments as

has been attempted in previous models (e.g. [27], [28]) we model a

generic treatment that will provide insight as to how temperature

and the stage being targeted influence the effect of a treatment on

ldaily. To do this, we create a treatment matrix, H, which is the

identity matrix, with the exception that targeted stages are 1-e,

where e is the efficacy of the treatment. For example, this matrix

targets all adults:

Population Matrix Models of Marine Ectoparasites
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H~

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1{e 0 0

0 0 0 0 0 1{e 0

0 0 0 0 0 0 1{e

2
666666666664

3
777777777775

:

This matrix is then incorporated into the most extreme seasonal

temperature matrices (described above) such that:

A~B365 � B364 � ::::::B2 �H � B1 ð16Þ

where H is inserted when the treatment should occur. Scenarios

were run in which a single treatment targeting one or combina-

tions of several life-stages was delivered between day 1 and day

365.

The efficacy of treatments varies considerably from farm to

farm. For example, the field efficacy of emamectin benzoate has

been estimated to be anywhere between 60 and 99% in naive

populations [54], but may be considerably less in resistant

populations [55]. For the purposes of this study we set e = 0.95.

Because we expect that analyses performed with lower efficacy will

have qualitatively similar results, we only explore one value for e.

For these analyses, we quantified mean effects on population

growth. To construct matrices, we quantified 1000 development

times, survival estimates and (where relevant) fecundity and

viability estimates and used the mean values in these distributions

to calculate Bday matrices.

Results

Effects of Fixed Temperatures and Larval Attachment
Rates

Increasing temperature caused l and R0 to increase and

generation time of sea lice to decrease (Figure 2), though the extent

of these changes depended upon the larval attachment rate. Both

temperature and the larval attachment rate caused l to increase.

When c= 0.001, ldaily was 0.99 at 4uC and 1.14 at 20uC. When

c= 0.5, ldaily was 1.013 at 4uC and 1.28 at 20uC. The generation

time of sea lice was between three and four times longer at 4uC
compared to 20uC and increased with lower values of c. For

example, when c= 0.001, the generation time was 107 days at 4uC
and 28 days at 20uC. When c= 0.5, the generation time was 73

days at 4uC and 23 days at 20uC. The generation time was longer

with lower values of c. R0 was greatest when the larval attachment

rate and temperature were high. For example, when c= 0.001, R0

increased from 0.25 at 4uC to 38 at 20uC. When c= 0.5, R0

increased from 2.6 at 4uC to 321 at 20uC.

Sensitivity analysis showed that, in general, l is most sensitive to

the survival and development of preadults (Figure 3).Sensitivity to

this life stage is greatest when the attachment rate is low and the

temperature is high. At high attachment rates and low temper-

atures, l is most sensitive to the survival and development of larval

sea lice.

Elasticity analysis shows that l is most sensitive to proportional

changes in matrix elements associated preadults and chalimus

(Figure 3). The elasticity values associated with these terms

decrease slightly with an increasing larval attachment rate and are

relatively insensitive to temperature.

Density-dependent Results
The probability of mating increases with the abundance of adult

female lice (Figure 4A). The rate of this change is much faster

when parasites are aggregated. When adult female lice are at low

abundances the probability of mating increases when females are

aggregated; however, above an abundance of one, aggregation has

little effect on the probability of mating. Above abundances of

three adult female lice, the probability of mating approaches 1.

The time necessary to reach the depensation threshold of three

adult female lice per fish is shortest when lice are aggregated and

the temperature is high (Figure 4B). At 20uC, a population of lice

with an initial abundance of 0.1 adult females per louse will reach

the threshold in 30 days for VMR= 2 and 44 days for VMR= 1. At

colder temperatures the population growth is so slow that sea lice

will take over a year to reach the depensation threshold. This

occurs at 5uC when VMR= 2 and at 10uC when VMR= 1.

Effects of Seasonality
Both increases in yearly mean temperature and yearly

temperature variation caused an increase in ldaily (Figure 5A

and 5B); however increases in yearly mean temperatures had a

greater effect. For example, when c= 0.1 per day, a 2uC increase

in the yearly mean temperature caused estimates of ldaily to

increase from 1.085 to 1.119, while a 2uC decrease in the yearly

mean temperature caused ldaily to decrease to 1.055. Increasing

the extreme values for one season caused a similar change. A 2uC
decrease in the winter minimum caused ldaily to decrease to 1.072,

while a 2uC increase in the summer maximum temperature by

2uC caused ldaily to change to 1.103 . Increasing the variation in

temperature across the year also caused l to increase (Figure 5C

and 5D). When c= 0.1, ldaily increased to 1.089 in the more

seasonal temperature profile and 1.096 in the most seasonal

temperature profile.

For all temperature profiles, increasing the larval attachment

rate caused ldaily to increase. For example in the average seasonal

temperature profile, ldaily is 1.037, 1.057, 1.085, 1.114 and 1.130

for attachment rates of 0.001, 0.01, 0.1, 0.5 and 0.9 respectively.

Effects of Treating Different Life Stages Across Seasons
Analysis of the effect of single stage-targeted treatments across

time show that both the life stage targeted and the time of

treatment application can influence the effect of a treatment on l
(Figure 6). Treatments targeting eggs, chalimus, preadults and

adults are similarly effective in the summer; however, in the winter

treatments targeting chalimus and preadults are most effective.

Treatment efficacy is far greater when several stages are targeted

simultaneously.

Discussion

Sea lice are a prominent marine ectoparasite that threaten the

productivity of salmon farming and are associated with increased

mortality in wild salmon [12], [13]. The matrix models presented

here suggest that temperature can increase the rate at which

infestations establish and develop on farmed salmonids as a result

of increased reproductive success and development at high

temperatures and because the dampening effect of mate limitation

on population growth is more quickly overcome at higher

temperatures. The life history of L. salmonis has been studied in

much more detail than many other sea lice in the Caligidae family

and construction of similar matrix models for other species of sea

lice may not be possible due to the lack of data needed for

parameterization [56]; however, many aspects of sea louse life

history are similar across species including temperature-dependent

Population Matrix Models of Marine Ectoparasites
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development, high fecundity and the existence of a free-swimming

larval stage that has an endogenous energy supply [39], [56].

Therefore it is likely that the temperature-dependent trends found

in this study extend to other species in the Caligidae family.

Increased temperature causes more rapid development in sea

lice for every life stage except copepodids, in which endogenous

energy supplies provided to the egg and the probability of finding a

host constrain survival and development [39]. One of the more

dramatic results of increased development is the larger increase in

net reproductive rate of sea lice. At high temperatures, they

produce more surviving offspring in a shorter time than at low

temperatures. Collectively these increases in development and

fitness drive the rapid increase in population growth that occurs

with increasing sea surface temperature.

The temperature ranges addressed in this study are within the

ranges experienced on farms. Typical sea surface temperatures on

salmon farms range from 1–14uC in Atlantic Canada, 6–18uC in

Ireland and 1–20uC in some Norwegian fjords [49]; however, the

majority of research on sea lice is focused on relatively moderate

temperatures (e.g. between 6uC and 14uC). This study suggests

that extreme temperatures are critical for determining the growth

rate of a population. In addition, the wide confidence intervals for

generation time and R0 at 4uC and in population growth at 20uC
suggests that stochastic effects are more dominant at extreme

temperatures and population trajectories at these temperatures

may be more challenging to predict. The effect of extreme

temperatures depends not only on their specific value, but on the

entire profile of the seasonal variation. Increased overall variation

does not have as large an effect on population growth as does an

increase in mean temperature.

Despite the strong effect of temperature seen in this model and

in laboratory studies [14], effects of temperature on sea louse

Figure 2. Effects of temperature and larval attachment rate on l, R0 and generation time. Dotted lines indicate 95% confidence intervals.
Population growth is positive when l is greater than 1.
doi:10.1371/journal.pone.0088465.g002

Figure 3. Sensitivities and elasticities of population growth rate (l) to matrix elements. The sum of the elasticities of matrix values for
surviving in (Pi) and transitioning out of (Gi) the same stages are presented.
doi:10.1371/journal.pone.0088465.g003

Population Matrix Models of Marine Ectoparasites

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e88465



infestations are not always detected in analyses of sea louse

infestations in the field. Two studies conducted on field data of sea

louse infestations on farms in Norway [17], [57] and one study

conducted in British Columbia [49] found that temperature was

positively correlated with sea louse abundance on farmed and wild

sea trout. In contrast, other studies, conducted in British Columbia

[58], Scotland [16] and Norway [15] found no detectable effect of

temperature on sea louse abundances. One explanation for this

apparent discrepancy may be that seasonal temperature decreases

in the winter masked the effects of warmer summer temperatures.

In addition, other factors, such as the attachment rate of

copepodids may be influencing infestations more than tempera-

ture. This study suggests that, in order to detect a temperature

effect on sea louse infestations, both the mean and the range of

temperatures across a year must be considered.

Mate limitation is also influential in determining the rate at

which a new population of sea lice increases. Mate limitation is

especially pronounced at cold temperatures, during which more

than a year may be required for new populations to reach

abundances where mate limitation does not occur, if this threshold

is reached at all. We made many assumptions about sea louse

mating that require further research to quantify empirically. In

Figure 4. Effect of temperature on population growth when mate limitation is included. Figure A shows the probability of mating as a
function of the abundance of adult females per host. Figure B shows the time to reach the threshold abundance of three female lice per fish (at which
point mate-limitation is negligible) when sea lice abundances on hosts have a variance to mean ratio (VMR) of 1, 1.3 and 2. For all scenarios, the initial
fish lice density was 0.1 fish per host and the attachment rate of larvae to the host was 0.1.
doi:10.1371/journal.pone.0088465.g004

Figure 5. Temperature profiles used for population projection matrices their effect on ldaily. Minimum and maximum seasonal
temperatures were altered relative to a baseline temperature (A) and temperature variance was increased relative to a baseline temperature (C). The
daily population growth rate for each of these scenarios is shown (B and D). Baseline temperatures are averages of five years of temperature data
from 33 farm sites in Scotland [53]. For all parameters means 6 95% confidence intervals are shown.
doi:10.1371/journal.pone.0088465.g005
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particular, the assumptions of high promiscuity among males and

females, equal sex ratios and co-aggregation of males and females

all can dramatically influence mating success of parasites [45] and

are not well quantified for sea lice [47]. In addition, host switching

among preadult males is predicted to be density-dependent and

may influence sex ratios and aggregation [59]. Skewed sex ratios

have been found in some sea louse populations [60], but not others

[47] and more work is needed to quantify this variation, identify

underlying environmental and biological factors, and predict the

consequences of this variation for population demographics.

While high louse abundances may cause negative density-

dependent effects (i.e., over-compensation), we did not include

these effects in our model. Over-compensation could occur if

population growth is reduced when sea louse abundances on the

host exceed thresholds above which immune responses in the host

may limit attachment by the parasite (for example in O. gorbuscha

[61]), or as a result of mortality of the infested host; however, there

is limited evidence that Atlantic salmon exhibit effective immune

responses against sea lice [37]. Moreover, it is unclear whether

morbidity and mortality of salmon with high levels of infestations

(e.g., mean annual levels greater than 20–30 sea lice per salmon)

will feed back to influence the epidemiology of sea lice [59], [60].

The numerous methods used to control sea louse infestations on

salmon farms must balance the negative effects of control strategies

including costs [18], stress to salmon [23], environmental impacts

of treatments [24], and evolution of drug resistance [20] against

the positive result of sea louse control. The analyses performed in

this study may inform specific recommendations for effective sea

louse control. Elasticity analyses and analyses of single treatments

in this study suggest that to be most effective, treatments for sea

lice must target more than one stage. While all of the simulated

control treatments reduced the population growth rate, none of

them reduced lambda to levels lower than 1, at which point the

population would start declining. This suggests that several

treatments throughout the year is ideal for effective control in

most situations. Treatments targeting chalimus and preadults are

most effective at low temperatures and when the attachment rate

of larvae is low. All treatments are less effective at controlling sea

lice in the summer. Because we did not incorporate immigration of

free-swimming copepodids into the model, and this can be an

important source of sea lice in some locations [42], it is also

possible that we are underestimating the role that this stage may

play in areas with high connectivity between farms.

Matrix elements with the highest sensitivities are most likely to

influence fitness (l) and evolutionary responses (i.e. drug

resistance) may emerge faster when these stages are targeted for

control. If heritable variation for resistance exists in selected sea

louse populations, resistance to treatments may evolve more

quickly when treatments are targeting the preadults. This is

particularly relevant as there is interest in developing immuno-

stimulants that may increase the ability of the host to reject

attaching copepodids [62]. Such a control strategy has the

potential to be successful because sea lice may be less likely to

evolve resistance.

In addition to specific suggestions for more strategic use of

treatments in response to sea louse monitoring, the temperature-

dependent PPMs in this study give some insight into the potential

for climate change to exacerbate sea louse infestations. While the

level of uncertainty in projected oceanic conditions is high, many

climate change models predict increases in temperate sea surface

temperatures as a result of increased stratification, decreased

upwelling and altered circulation [63]. However, increased

temperature is only one component of projected changes to

marine environments; oceans are predicted to experience sea-level

rise, altered circulation, decreased salinity and decreased pH [63].

These other factors have the potential to influence sea louse

epidemiology; increased circulation may decrease the attachment

rate of infectious copepodids by transporting them away from

susceptible hosts [64] and decreased salinity decreases attachment

of copepodids [50], [65]. Further studies are needed to understand

the net effects of the projected oceanic conditions on geographical

ranges and potential of sea louse epizootics on both farmed and

wild salmon. In addition, more work is needed to parameterize sea

louse life history at high and low temperature extremes. For

example, a maximum temperature threshold for L. salmonis has not

been determined and it is possible that physiological costs of

thermotolerance may decrease survival or fitness of sea lice at high

temperatures [56].

Figure 6. Effect of delivering a single control treatment at different times of the year on the population growth rate (ldaily) of sea
lice. The y-axis indicates the time of year since stocking that the single control treatment was delivered. All simulations assume a spring stocking of
salmon smolts, so day 1 is May 1. A treatment efficacy of 95%, a larval attachment rate of 0.1 and the most seasonal temperature scenario were used
for all calculations. Results for treatments applied to different life stages are shown.
doi:10.1371/journal.pone.0088465.g006
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More work is necessary to understand the effects of temperature

variation on wild salmon. Increased temperature means and

variation are predicted to increase sea louse infestations on farmed

salmon, suggesting that careful consideration of temperature must

be taken into account when sites for salmon farming are chosen,

especially in areas that may be predisposed to high levels of

exposure to sea lice due to hydrodynamic conditions and

proximity to existing salmon farms or wild salmon migration

routes. In contrast to salmon farms, the densities and locations of

wild salmon fluctuate temporally and the costs of infestations may

be mediated by other stressors that are less likely to occur on

salmon farms (for example, food limitation and predation) [66].

Quantifying spatial movement and physiological states of wild

salmon in relation to their sea lice exposure is an enormous

challenge, but may be a major benefit to understanding and

reducing conflicts between wild salmon conservation and salmon

farming.

Conclusions

The model built in this study differs from many previously

constructed agent-based and system-dynamic models of sea louse

population dynamics; its’ greatest utility is that it can be used to

highlight specific characteristics of the life history of this

ectoparasite that greatly influence its population growth. As such

the results of this study may be informative for designing

management programs to reduce the potential for sea louse

epidemics especially when taking seasonal and inter-annual

temperature variation into account. The broad recommendations

that are generated by this study support the continued use of

matrix population models for understanding the epidemiology of

ectoparasites from a life history perspective.
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