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Abstract. Using reliability data comprising of two modern, large scale wind farm sites and 

wind data from two onsite met masts, a model is developed which calculates wind speed 

dependant failure rates which are used to populate a Markov Chain. Monte Carlo simulation is 

then exercised to simulate three wind farms which are subjected to controlled wind speed 

conditions from three separate potential UK sites. The model then calculates and compares 

wind farm reliability due to corrective maintenance and component failure rates influenced by 

the wind speed of each of the sites. Results show that the components affected most by changes 

in average daily wind speed are the control system and the yaw system. A comparison between 

this model and a more simple estimation of site yield is undertaken. The model takes into 

account the effects of the wind speed on the cost of operation and maintenance and also 

includes the impact of longer periods of downtime in the winter months and shorter periods in 

the summer. By taking these factors into account a more detailed site assessment can be 

undertaken. There is significant value to this model for operators and manufacturers. 

 

1.  Introduction 

A wind turbine’s reliability is commonly assessed based on the availability it achieves. The 

availability is the proportion of time in which an asset is able to produce electricity [1]. The time in 

which a turbine is unavailable is due to either corrective or preventative maintenance [2][3]. Onshore 

wind turbines typically perform very well, achieving availabilities between 97 % – 99 % [4].  

 To increase the availability of a wind turbine more money can be spent on operation and 

maintenance (O&M) with the aim of reducing the probability of  a significant downtime occurring. 

However the cost of O&M must be weighed up against the cost of lost revenue, which is due to 

downtime [5]. By increasing the cost of O&M there is a reduction in downtime, but a point is reached 

where the direct cost of O&M is greater than the savings made by increasing the availability of the 

asset. This is the point when it no longer makes financial sense to increase O&M spending.  

 It has been demonstrated that there is a relationship between wind speed and wind turbine failure 

rates [6]–[8]. Previous research has demonstrated that wind turbine component failure rates can be 

calculated as a function of wind speed [9][10]. Using this methodology it is possible to model how 

failures to wind turbine components, and the resultant downtimes, effect energy production and the 

cost of O&M.  

 This paper aims to assess the reliability and productivity of three potential wind farm sites using 

wind speed dependent failure rates – for which a method has been developed in previous research 
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[9][10]. A comparison will then be made between the expected output according to a model that 

incorporates the wind speed dependent failure rates and one which does not.        

 

 
Figure 1: Methodology. 

2.  Methodology 

The methodology in this paper is outlined in Figure 1. The datasets come from a reliability record of 

two onshore wind farms (sites 1 and 2), which comprised of 468 individual failures throughout 381.7 

wind turbine years of operation, and meteorological masts which measured the wind speed on each of 

the sites throughout the same period. The wind turbines on both sites are the same model and are 

between 3 and 6 years old. They are variable speed, pitch regulated and have a generation capacity of 

2.3MW. Only accounting for downtime attributed to corrective maintenance, the average availability 

of the two sites over the recorded period was 99.44 %. Assuming two days of preventative 

maintenance takes place per wind turbine year this reduces to 98.89 % availability. 

 

Table 1: Component failure rate and data points 

Components  
Failure Rate (Failures per 

wind turbine year) 

 

Failure log entries/data 

points 
Emergency Systems 0.0260 2 
Met Instruments 0.0754 29 

Rotor 0.0468 18 
Blade Pitch System 0.0676 26 

Drive Train 0.1561 60 

Yaw System 0.1509 58 
Hydraulic System 0.0780 30 

Control System 0.5203 200 
Main Generator 0.0312 12 

Lifting System 0.0104 4 
Nacelle 0.0156 6 

Tower 0.0598 23 

Total 1.2381 468 

 

The average daily wind speeds of sites 1 and 2 are 5.86m/s and 6.62m/s respectively [10]. Data 

comes from two onsite met masts – for both Blacklaw and Whitelee – that are assumed to take 

measurements that are representative of hub height wind speed across the whole of both sites. The 

wind speed data and reliability data from both sites were combined to produce a dataset which 

matched each recorded failure with the wind speed that occurred on that site on the day of failure. This 

Data 

Sources 

 

• Component reliability data from two large wind farms 

• Wind speed data from onsite Met Masts covering the period over which the reliability data was recorded.  

• Find the wind speed each day a failure occurred 

 

Take 
Histograms 

of Data 

• Bin the data according to wind speed. 

• Fit histograms and probability density functions (PDF) to weather data and to reliability data. 

• Organise the downtime data according the average wind speed on the day the failure occurred 

Calculate 
Failure 

Rates 

• P(Failure to Component) 

• P(Wind Speed) 

• P(Wind Speed | Failure to Component) 

• P(Failure to Component | Wind Speed) 

Monte 
Carlo 

Markov 
Chain 
Model 

• Input - Wind speed time series from potential wind farm site 

• Output - Operation data consisting of energy production, component failures and corresponding downtimes 
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dataset was then split up into the twelve main components, shown in Table 1 with their respective 

failure rates calculated using the reliability data. The components which failed the most frequently are 

the control system, the yaw system and the drive train.   

2.1.  Calculating the Failure Rates 

To calculate a component failure rate as a function of wind speed, Bayes Theorem is used; this is 

shown in equation 1.  

 

 (  | )   
 ( |  ) (  )

 ( )
 (1) 

 

 If w is the average daily wind speed on a given day,    represents a failure to component i. The 

term on the left hand side of equation 1 represents the probability of a failure occurring to a 

component (  ), given the average daily wind speed w. This probability represents the failure rate of 

component i, as a function of average daily wind speed w.  

 

 
 

 
 

Figure 2. The probability of a wind speed w occurring 

on a given day, when a failure has occurred to i. 

Figure 3. The probability of a wind speed w occurring 

on a given day. 

 

 The terms on the right hand side of equation 1 can be calculated from the reliability data and the 

met mast data. The term P(w|  ), is the probability of wind speed w occurring, given a failure has 

occurred to component i. This is calculated by taking a normalised histogram (PDF) of the daily 

average wind speeds recorded on days when a failure occurred to component i. The data is binned as 

shown in Figure 2 and Figure 3. The highest daily average wind speed measured from sites 1 and 2 

was 17 m/s.  

 

   
                                                 

                     (    )
 (2) 

 

 The second numerator term is  (  ), which is the probability of a failure occurring to component i 

on a given day, otherwise known as the daily failure rate of i. This is calculated by using equation 2. 

The annual failure rates for each component are shown in Table 1. 

 The denominator term P(w) represents the probability that the daily average wind speed is w. 

Assuming that daily average wind speeds have the same effect on the failure rates of components on 

both sites, this is calculated by taking a second PDF, using the same bins as before, of the daily 

average wind speeds recorded on sites 1 and 2 throughout the period that the reliability data was 

recorded. The quantity of data from site 1 and 2 differ, so a merged data set was produced which 

describes the average daily wind speed of both sites proportionally, this is shown in Figure 3. A more 

The Science of Making Torque from Wind 2014 (TORQUE 2014) IOP Publishing
Journal of Physics: Conference Series 524 (2014) 012181 doi:10.1088/1742-6596/524/1/012181

3



 

 

 

 

 

 

detailed explanation of this merging can be found in Wilson and McMillan [10]. The average wind 

speed of this merged dataset is 5.98 m/s.  

 Therefore with P(w), P(  ) and P(w|  ) known, equation 1 was used to calculate the probability of 

a failure to component i, given a daily average wind speed w, P(  | ). The wind speed dependent 

failure rates for the control system, yaw system and drive train are shown in Figure 4.  

 

 
Figure 4: Wind speed dependent failure rates 

2.2.  Downtime 

Every failure recorded in the reliability record has a corresponding downtime attributed to it. The 

downtimes were organised similarly to the recorded failures, first they were split up according to the 

failed component and then were divided up into the wind speed bins, according to the average daily 

wind speed when the failure occurred. Figure 5 shows the distribution of downtimes for the control 

system, yaw system, drive train and the remaining nine components.  

 Of the failures in the dataset, 83.3% had a downtime of less than 24 hours; this is an improvement 

on the downtime distribution calculated by Faulstich et al [11]. This was to be expected as this dataset 

comprises of a larger and more modern and advanced wind turbine model.   

 

 
Figure 5: Distribution of downtime 

2.3.  Monte Carlo Markov Chain Simulation 

Often the reliability of engineering systems is described as being discrete in that it can exist in one 

state until a transition occurs and the system changes to another state. These transitions can be 

represented by a transitional probability matrix. This characteristic means that many systems can be 

modelled as a Markov process. Markov Chains have been used often to model components and 

systems [12][13][14][15][16].  
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 Each component in this analysis is represented by a markov chain that can exist in one of two states 

at any time, “operating” or “failed”. The transition rate between the “operating” state and the “failed” 

state is the failure rate (λ). If a failure occurs to any component, the whole system stops operating and 

suffers a downtime before then returning to the “operating” state.  

 

 
  

 

Figure 6: Markov Chain Monte Carlo simulation method. 

 

 A Markov Chain Monte Carlo (MCMC) model has been developed which – using the wind speed 

dependent failure rates calculated in section 2.1, as opposed to the static failure rate in Table 1 – 

determines the impact of wind speeds on the availability of the wind turbine and its components 

throughout its lifetime. MCMC has been used previously by various authors  to model reliability 

[2][11][14][15]. The lifespan of a wind farm is then simulated using historical wind speed data from a 

potential wind farm site as a model input. From this simulated operation data, component failure rates, 

wind farm reliability and energy production can be evaluated.  

 

 
Figure 7: Wind speed distributions for Salsburgh, Prestwick and Leuchars. 

 

 In the MCMC simulation, the downtime a component spends in the “failed” state before it returns 

to the “operating” state is calculated by sampling according to which wind speed bin the average daily 

speed on the day of failure fits into. If for example the control system fails when the daily wind speed 

falls between 8 m/s and 10 m/s, there are 34 recorded control system failures which have occurred in 

the data in that wind speed bin, all with corresponding downtimes. A downtime is selected from this 

set randomly with uniform probability distribution using Monte Carlo Simulation.  

  

Figure 6 summarises the simulation method where t represents time in days since the start of the 

simulation, a denotes the availability of the wind turbine, which is either available (a = 1) or 
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unavailable (a = 0) at time t. The downtime and failure rate are, respectively, d and λ. Both d and λ are 

functions of the wind speed, w which is a function of time, t. The simulation continues running for 

200,000 wind turbine years until the variance of the samples become constant.    

3.  Results and Discussion 

The average wind speeds of the potential wind farm sites, Salsburgh, Prestwick and Leuchars are 7.91 

m/s, 6.16 m/s and 6.59 m/s respectively. The data for each site comes from the Met Office [17] and 

consists of three years of hourly wind speed data – between 2009 and the end of  2011 – recorded 

using 10m masts, which has been aggregated into daily average wind speed. The wind speed profile 

power law is used to extrapolate the 10m wind speeds to a hub height of 82m, using a surface 

roughness factor of 0.04 [18]. The wind speed distributions of the sites are shown in Figure 7. 

 

 
Figure 8: Site seasonal failure rates. 

3.1.  Reliability 

Using the model, the failure rate of the three potential wind farms throughout the year is calculated. 

The mean results from the MCMC simulation is shown in Figure 8. As the three potential sites are all 

located in Scotland, they followed approximately the same seasonal trend in that the failure rate 

declined in the summer periods when the wind was calmer and produced higher failure rates in the 

winter when the wind speed was high. February had lower wind speeds in Scotland than usual during 

2009 – 2011 which explains the low failure rate for all three sites in February.    

 

Table 2: Calculated site availability and system failure rate 

Site 
Wind Farm Failure Rate 

(Failures per wind turbine year) 
Availability (%) 

Salsburgh 1.60 98.65 

Prestwick 1.29 98.84 

Leuchars 1.34 98.81 

 

 Table 2 shows the annual wind turbine failure rates and availabilities calculated by the model, 

assuming that the wind turbines on each wind farm are shut down two days a year for preventative 

maintenance. The site with the highest availability is Prestwick, which also had the lowest average 

daily wind speed. Equally the site which had the highest wind speed, Salsburgh, has the highest failure 

rate and lowest availability. 

 The individual components all react differently to wind speed as shown in Figure 4. The effect of 

the wind speed on the individual components is shown in Figure 9. The components which are most 

badly affected by increased wind speeds are the control system and yaw system. The site which differs 

most to the reliability data is Salsburgh – with the failure rates of the control system and yaw system 

increasing by 44% and 45% respectively. The drive train failure rate increases by 26%, 2% and 6% on 

Salsburgh, Prestwick and Leuchars respectively.   
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Figure 9: Component failure rates for the three sites calculated by the model compared to the original reliability 

data. 

3.2.  Economic Assessment  

The aim of this section is to assess the economic benefit of using the wind speed dependent failure rate 

MCMC model as opposed to simply assuming static failure rates and availabilities which are 

calculated from the reliability data of and are not wind speed dependent.  

  

Table 3: Variables used in calculation of net profit 

Availability a 98.89% 
O&M Cost per Turbine Year β £31,242 
Unit Price of Electricity s 80 £/MWh 

Capital Expenditure CapEx £3,000,000 
Lifetime of Site l 7300 days 

 

 Using this static model, the net profit of a site can be calculated using equations 3-5 and the taking 

the values in Table 3. This static method assumes therefore that each site (using the same model of 

turbines as site 1 and 2) will be equally reliable and will therefore have the same component failure 

rates, site availability and O&M cost, regardless of the wind speed distribution of the site.  

 

 
Figure 10: Wind turbine power curve used in calculations. 

 

 The availability and O&M cost in Table 3 have been calculated from the reliability data and are 

used in equations 3 and 4. The unit price of electricity in Table 3 is broken down to £40/MWh as a 

conservative estimate of the price of a unit of electricity sold on the UK market and the UK subsidy 

(the Renewable Obligation Certificate) which is also estimated to be roughly £40/MWh for onshore 

wind [19][20]. The power curve shown in Figure 10 is used to calculate generated power P(U(t)) and 

is used by both the wind speed dependent MCMC model and the static model. 
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 Unfortunately replacement part costs and labour costs are not available for the reliability dataset. 

O&M costs are typically estimated to be 0.6 - 0.7 c€/kWh [21]. Based on the production of sites 1 and 

2 this equates to approximately £30,000 - £35,000 per wind turbine year.  

 To calculate approximate costs of O&M, which take into account wind turbine reliability and not 

production, downtime is considered as it is known to correlate with failure severity and therefore cost 

[22]. The downtimes are grouped as 0 – 24 hours, 24 – 48 hours and over 48 hours; these are assumed 

to cost £2,500, £25,000 and £250,000 respectively per failure, not including lost production. Applying 

these assumed costs to the reliability data results in an O&M cost of £31,242 per wind turbine year. 

This is the cost of O&M in the static model and compares well with estimates made in Morthorst [21]. 

 The mean results of the MCMC analysis and equation 3 are shown in Table 4. The percentage 

difference between the MCMC model mean results and the static model is shown in the difference 

columns. The revenue of each potential site is estimated simply by using equation 3. As shown in 

Table 4 the revenue is over estimated compared to what is calculated by the MCMC model in all three 

sites. The largest difference is Salsburgh which is calculated by the model to have a reduced 

availability from the assumed value used in equation 3. The difference in revenue is also due to the 

wind turbine failing, according to the model, at times of the year when the wind is at its strongest.  

 

Table 4: Comparison between model and equation 5 

Site 

Revenue (per turbine) O&M (per turbine Year) Net (per turbine) 

MCMC 
(£millions) 

Static -  

Equation 3 

(£millions) 

Difference 

(MCMC - 

Static) 

MCMC 
(£) 

Static - 

β 

(£) 

Difference 

(MCMC - 

Static) 

MCMC 
(£millions) 

Static - 

Equation 5 

(£millions) 

Difference 

(MCMC - 

Static) 

Salsburgh 12.43 12.52 -0.72% 49313 31242 57.84% 8.44 8.90 -5.07% 
Prestwick 7.66 7.67 -0.13% 34787 31242 11.35% 3.96 4.05 -2.00% 
Leuchars 8.58 8.59 -0.12% 36742 31242 17.60% 4.85 4.97 -2.42% 

 

 The O&M cost estimated by the MCMC model is greater for each site than that calculated for the 

static model. The proportion of failures in the Salsburgh simulation which lead to downtimes of 

greater than 48 hours is 11.81 %, compared to 8.55 % of failures in the reliability data. This 

redistribution in severity of failures, along with a higher overall failure rate, accounts for the 57.84 % 

increase in projected O&M cost per wind turbine year. The static model does not account for this in its 

calculation.   

 The net income of each potential site is estimated using equation 5 and the operational output of the 

MCMC model. Comparing the results of the two methods, the difference between them shows that by 

neglecting the effect of wind speed dependent failure rates, the net income of the three sites are over 

estimated. Salsburgh is the site with the highest difference between the model and the non-model 

estimates, this is because of its greater average wind speed which increases the cost of O&M. 

However Prestwick – which has a relatively low wind speed – still shows a difference of 2.00 % in net 

income when comparing the methods. For a moderately sized wind farm of 50 wind turbines, this 2.00 

% difference would equate to £4.5 million in lost revenue over twenty years.  

 There is a small difference in revenue shown in Table 4 for the three sites, calculated using both 

methods. This is due to the effects of the seasonal wind speeds on wind turbine reliability and 

productivity. Figure 11 shows the average power generated per month and the percentage of power 
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lost on average each month because of component failures and resultant downtimes from the mean 

results of the MCMC simulation. As shown in Figure 11 the percentage of power lost to potential 

power increases in the winter months and decreases in the summer months. This seasonal trend cannot 

be modelled using equations 3- 5. The MCMC model takes account of this and any change in 

availability and the result is a difference of 0.72 %, 0.13 % and 0.12 % in revenue for Salsburgh, 

Prestwick and Leuchars respectively.  

 If a developer decided to build a wind farm at Salsburgh and chose take out a warranty with the 

original equipment manufacturer (OEM), they would benefit if the OEM did not account for the wind 

speed dependent failure rates. However this may mean that the OEM would recoup their costs at 

Salsburgh by increasing the price of the warranty on other sites. For a developer at a site with a less 

productive resource which causes fewer failures, such as Prestwick or Leuchars, this resultant higher 

O&M cost would make the investment less economical. However if the OEM factored the effects of 

individual site wind speed into their warranty, the costs to the operator would better reflect the 

reliability and the risk of their site. 

 

 
Figure 11: Salsburgh average monthly power generated and percentage of potential power lost due to failures. 

 

 Banks and other organisations that cover the operator’s initial investment would also benefit from 

factoring in the impact of wind speed on reliability. For sites with high wind speeds, such as 

Salsburgh, there are significant differences between net incomes calculated when accounting for the 

impact of wind speed on reliability and when using static failure rates. According to Table 4, a wind 

farm sited at Salsburgh would generate 5.07 % less income than expected according to equation 5.  

 This is of course assuming a static O&M cost. In reality the cost of O&M would rise as the wind 

turbine and its components follow a bath-tub curve and become less reliable and more expensive to 

maintain [22]. More work must be undertaken to understand how the wind speed effects wind turbines 

of different ages. As described in section 2, the wind turbines in this analysis are between 3 and 6 

years old. The reliability data therefore shows a period of time during which the wind turbines would 

be expected to be very reliable and be operating at the bottom of the bath-tub curve [22].   

4.  Conclusion 

This paper has demonstrated a method for assessing the reliability of a potential wind farm site by 

applying wind speed dependent failure rates calculated from a multi megawatt wind turbine reliability 

dataset and onsite met mast data. The advantages of using this method, as opposed to using static 

component failure rates,  is that more informative O&M costs can be calculated and the effect of 

seasonal changes on wind turbine operation can be accounted for.  

 The site which will produce the most electricity is Salsburgh, which also has the strongest wind 

resource and the highest predicted failure rate. The model estimated an O&M cost which was 57.84 % 

higher than expected. The effect of more frequent and longer downtimes in the winter also reduced the 

estimated revenue by 0.72 %. The effect on the net income was a reduction of £460,000 the lifespan of 

the wind farm.  
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 Future research will assess the impact of the wind speed on the reliability of wind turbines of 

different ages. Currently the results only describes the impact of the wind speed on one model of wind 

turbine – to make the model more useful, data from other wind turbine models will need to be used to 

calibrate the model. From this site specific model, more detailed assessments could be made including 

spares optimisation based on seasonal reliability.  

 To properly assess the reliability and economic viability of a site, it is therefore important that the 

impact of the wind speed on the reliability of the components is assessed. The research in this paper 

will be of particular interest to operators and wind turbine manufacturers. 
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