
EMPLOYING LOCAL AND GLOBAL SENSITIVITY ANALYSIS TECHNIQUES TO 
GUIDE USER INTERFACE DEVELOPMENT OF ENERGY CERTIFICATION AND 

COMPLIANCE SOFTWARE TOOLS

Filippo Monari1, Paul Strachan1 and Jose Ortiz2

1ESRU, University of Strathclyde, Glasgow,  UK
2BRE, Garston, Watford, UK

ABSTRACT
This  paper  reports  on  how  sensitivity  analysis 
techniques,  applied  to  the  inputs  of  calculation 
engines  for  energy  certification  and  regulation 
compliance  purposes,  can provide  guidance  for 
simplifying their user interfaces.

Two different techniques were employed: the Morris 
Method, used to screen the input factors, and Monte 
Carlo  Analysis,  used  to  assess  the  effects  of 
approximations on groups of parameters.

It  is  shown that  this analysis approach  can  lead to 
useful  reductions  in  user  effort  without  significant 
loss of accuracy. 

INTRODUCTION
Energy  certification  and  regulation  compliance 
checks are now routinely required for new buildings 
and  major  refurbishments.  There  are  two  key 
requirements for the modelling tools used: they must 
give reliable predictions of energy performance and 
carbon  emissions  using  standardised  methods,  and 
the  user  interface  must  be  easy  to  use  and 
unambiguous. The software has to be used by a large 
number  of  users  without  excessive  training 
requirements.

The  assessors  who  use  the  compliance  and 
certification  tools  often  have  to  put  in  complex 
buildings with a large number of zones, and they are 
often under time constraints. Furthermore, the energy 
calculations require  the input of a large number of 
parameters  and  factors.  Often  not  all  the  required 
data  are  immediately  available  and  the  effort  to 
achieve suitable values for many of them can be very 
consuming in terms of time and resources.

Some  input  parameters,  although  necessary  for 
performing the  calculations,  may have  a  negligible 
influence  on  the  model  response,  so  it  may  be 
possible  to  use  default  values,  or  lower  levels  of 
precision.

This would mean the assessors could concentrate just 
on the more important parameters. 

This paper reports on a sensitivity study of the inputs 
to provide guidance for simplifying user interfaces.

The  focus  for  the  research  is  SBEM  (Simplified 
Building  Energy  Model)  which  is  the  standard 
software used in the UK for energy certification and 
regulation  compliance  of  non-domestic  buildings 
(SBEM 2011). It  was developed by BRE (Building 
Research Establishment),  based on the BS EN ISO 
13790 Standard (2008). 

Two different sensitivity techniques were applied to 
the input data required for SBEM calculations of two 
buildings: the Morris Method which is used to screen 
the input factors and the Monte Carlo Analysis which 
is used to assess the effects of groups of parameters. 
Although these  methods have  been  used elsewhere 
for assessing prediction uncertainty, the distinct focus 
of  this  study  is  to  develop  recommendations  for 
simplifying model input.

The analysis identified a set  of the most important 
parameters  which  need  to  be  entered  accurately, 
another set of parameters which could be defined as 
belonging within a band rather than a precise value, 
and a further set which could be approximated with 
default  values.  The  analysis  also  quantifies  the 
uncertainty associated with these simplifications.

The Simplified Building Energy Model (SBEM) 

SBEM is  a  computer  program  that  provides  an 
analysis  of  a  building's  energy  consumption.  It 
calculates  monthly  energy  use  and  carbon  dioxide 
emissions  of  a  building  given  a  description  of  its 
geometry,  construction,  use,  HVAC  and  lighting 
equipment.  It  was  originally  based  on  the  Dutch 
methodology NEN 2916:1998 (Energy Performance 
of  Non-Residential  Buildings)  and  has  since  been 
modified to comply with the recent CEN Standards. 
Details  of  the  calculation  method,  the  algorithms 
used  and  the  assumptions  made  are  provided  in 
SBEM (2010) and  SBEM (2011).  SBEM makes use 
of  standard  data  contained  in  associated  databases 
and available with other software (iSBEM 2012).

The purpose of SBEM and its interface iSBEM is to 
produce consistent and reliable evaluations of energy 
use  in  non-domestic  buildings  for  Building 
Regulations  Compliance  and  for  Building  Energy 
Performance Certification purposes. Although it may 
assist the design process, it is not primarily a design 
tool. 



SIMULATION

This  section  will  focus  on  the  sensitivity  analysis 
techniques applied, especially on the Morris Method, 
and the way in which the different techniques were 
combined.

Morris Method

The Morris Method (Morris 1991) is an interesting 
sensitivity technique that is being utilised in several 
fields  in order to screen model inputs and understand 
their  influence  (Alam  et  al.  2004;  Corrado  and 
Mechri 2009; Garcia Sanchez et al. 2012; Heo et al. 
2012).
It  is  basically  a  “local  method”,  even  though  the 
parameters  are  altered  with  respect  to  a  different 
starting configuration of the input variables each time 
and through the entire assumed variation ranges. The 
method  changes  one  factor  at  a  time  and 
characterises the sensitivity of a model with respect 
to  its  inputs  through  the  concept  of  elementary 
effects (ee), which are approximations of the partial 
derivatives of the model itself: 

ee=
y ( x⃗+ e⃗i∗Δi )− y ( x⃗ )

Δi

(1)

where  x⃗  is the input vector and  e⃗ i is a zero 
vector where only the i-th position is equal to 1.
Each  parameter  has  to  be  discretised,  dividing  its 
range into a chosen number of levels corresponding 
to as many quantiles. In this way the variable space is 
represented by a p-level k-dimensional grid (where p 
and  k are  respectively  the  number  of  levels  and 
parameters).
A chosen number,  r (usually  within the range [10, 
50]), of  ee are estimated at various sampled points, 
randomly  selected  in  the  discretised  space,  except 
that the following point must differ from the previous 
one just in the value of one parameter. In this way a 
finite distribution (Fi)  of  ee is  determined for  each 
input variable. The mean of the absolute values  (μ*

i, 
Campolongo et al 2007) and the standard deviation 
(σi) of these distributions characterise the magnitude 
and  the  typology  of  each  parameter's  effect 
respectively.

One of the method's most attractive characteristics is 
the quantity of achievable information relative to the 
computational effort needed. The Morris Method can 
return information about the global magnitude of an 
effect  and  the  kind  of  influence,  with  a  basically 
linear  order  of  growth  relative  to  the  number  of 
parameters: 

N=r∗(k+1) (2)

where N is the number of runs. Unfortunately it does 
not  provide  any  distinction  about  interactions, 
quadratic or  higher order effects, although there are 
improved versions that  are able to  evaluate  second 
order effects accurately (Campolongo and Braddock 
1999; Cropp and Braddock 2002).   

The  following  sets  out  additional  specifications  of 
the Morris Method as used in this study.

The  sample  generation  was  made  following  the 
improved methodology proposed by Campolongo et 
al (2007). 

In order to get results independent of the measured 
units, the  ee have been calculated from scaled input 
and  output  values,  by  subtracting  the  mean  and 
dividing  by  the  standard  deviation,  as  in  common 
statistical practice.

The  classification  of  the  effect  typology  for  each 
parameter  has  been  done  following  the  method 
purposed by Garcia Sanchez et al. (2012):

− if σi/μ*
i  
≤ 0.1 then linear effect;

− if 0.1 ≤  σi/μ*
i  ≤ 0.5 then monotonic effect;

− if 0.5 ≤  σi/μ*
i  ≤ 1 then quasi-monotonic effect;

− if  1 ≤  σi/μ*
i  then non-monotonic, non-linear effect.

Finally,  the  following  heuristic  principle  has  been 
used  to  classify  the  parameters  as  most  important 
(MIP) and least important (LIP):

− MIP: the first  n parameters in order of importance 
having a Root Sum of Squares (RSS, Equation 4) of 
their singular effects  less or equal to 99% of the 
total amount;

− LIP: the remaining parameters having any sort of 
effect.

Analysed cases

In  order  to  perform  the  analysis  two  cases  from 
iSBEM's  installation  package  (iSBEM  2012)  have 
been considered:

− Approval case 1 (Case 1);

− Example building - Complete (Case 2).

A brief description of the main features  of the two 
buildings follows.

“Approval  case  1”  is  a  small  one-storey  building 
containing  offices  and  a  workshop,  with  402.6  m2 

floor area and 2.8 metres high. It has just one thermal 
zone and it is provided with some renewable energy 
system  including  a  solar  energy  system  (SES), 
photovoltaic panels (PV) and a wind turbine (WT).

Heating is provided by fan-coils and LTHW boiler 
fuelled by natural gas, while cooling is supplied by 
an  air  cooled  chiller  powered  by  grid  supplied 
electricity. The hot water system (HWS) is a stand-
alone  water  heater  which  is  also  powered  by  grid 
supplied electricity.

“Example  building  –  Complete”  is  larger  than  the 
previous case and contains many different activities. 
It is developed on two floors. On the ground floor are 
located  a  supermarket  and  coffee  shops  while  the 
first floor is dedicated to offices. The total floor area 
is 2900 m2  and each floor has a rectangular shape 
with dimensions 50x30x3 metres. It is composed of 



Table 1

Considered macro-parameters, for Case 2, uncertainty distribution and parameters and their typology

(where s indicates the standard deviation as percentage of the mean, ±Δ the lower and upper limit of even distributions as  
percentages of the mean, MIP the most important parameters, FIXED-LIP the least important parameters to which a fixed  

value can be attributed and APPROX-LIP the least important parameters definable within ranges – as identified later in the  
paper)  

MACRO-PARAMETER  ID DISTRIBUTION UNCERTAINTY 
FACTOR SETS

CL
AS
S

% 0 1 2

External wall U-values (W/m2K) 1 normal s 15 15 15 M
I
PInfiltration at 50 Pa (m3/m2h) 20 normal s 30 30 30

Lighting circuits wattage (W) 22 even ±Δ 10 10 10

Zone area (m2) 14 log-normal s 2 2 2

External wall area (m2) 38 log-normal s 2 2 2

Hot water generator seasonal efficiency 7 even ±Δ 3 3 3

Effective thermal mass (kJ/m2K ) 2 normal s 7 7 7

HVAC cooling seasonal efficiency 11 even ±Δ 3 3 3

Specific fan power of the air distribution system (W/(l/s) ) 13 even ±Δ 3 3 3

Specific fan power of the thermal units in the zone (W/(l/s) ) 19 even ±Δ 3 3 3 F
I
X
E
D
-
L
I
P 

HVAC heating seasonal efficiency 12 even ±Δ 3 3 3

Heat recovery seasonal efficiency 10 even ±Δ 3 3 3

Lighting photoelectric control parasitic power (W/m2 ) 23 even ±Δ 3 3 3

Air flow rate for mechanical exhaust ventilation (l/sm2) 16 even ±Δ 3 3 3

Specific fan power for mechanical exhaust ventilation 
(W/(l/s) )

17 even ±Δ 3 3 3

Window frame factors 40 log-normal s 2 2 2

Window aspect ratios 41 log-normal s 4 4 4

Window areas (m2) 39 log-normal s 2 10 20  A
P
P
R
O
X
-
L
I
P 

Thermal bridge Ψ-values (W/mK) 24-36 even ±Δ 10 15 20

Glazing U-values (W/m2K) 4 normal s 5 10 15

Glazing total solar transmission 5 even ±Δ 5 10 15

Glazing total light transmission 6 even ±Δ 5 10 15

SES storage volume  (m3) 9 log-normal s 3 15 30

SES panel areas (m2) 8 log-normal s 3 10 20

External wall lengths (m) 37 normal s 1 5 10

External door areas (m2) 42 log-normal s 2 10 20

Internal wall U-values (W/m2K) 3 normal s 15 20 25

Lengths of the hot water system pipework in the zones (m) 21 normal s 1 5 10

Zone height (m) 15 normal s 1 5 10

Internal wall lengths (m) 43 normal s 1 5 10

Internal wall areas (m2) 44 log-normal s 2 10 20



19 thermal zones, served by an HVAC system and an 
HWS.

The HVAC system is a single duct VAV, powered by 
an electric ground source heat  pump, and equipped 
with a heat recovery unit, which provides heating and 
cooling.  The HWS is  a  dedicated  hot  water  boiler 
fuelled by natural gas. The building is also equipped 
with a solar hot water system.

The  parameters  characterising  the  two  building 
models have been collected and grouped in order to 
create  comparable  macro-parameters.  For  example 
all  the  areas  of  the  envelope  elements  have  been 
grouped and changed together during the simulations.

Thus,  for  Case  1,  56  parameters  were  considered 
grouped in 41 macro-parameters and for Case 2, 621 
parameters were taken into account and gathered in 
44 macro-parameters.

This paper focuses on the results of Case 2, which is 
considered the more exhaustive one.

Table 1 gives an overview of the considered macro-
parameters  for  Case  2,  which  are  discussed  in  the 
following section. 

Uncertainty analysis

A computer simulation will be subject to data input 
errors.  Errors  can  be  of  two types:  systematic  and 
random. The former can be caused by using incorrect 
data  for  the  input  parameters  or   employing  the 
wrong or incomplete model of the physical process 
(model  inadequacy).  The  latter  are  discovered  by 
measuring  the  same  quantity  repeatedly  under  the 
same conditions and,  unlike systematic  errors,  they 
can not be attributed to a particular cause.

This  study  is  not  focused  on  the  accuracy  of  the 
calculation method embedded within SBEM (i.e. the 
monthly method in BS EN ISO 13790:2008) but it 
aims to estimate  the degree  of  precision needed in 
defining  the  input  variables.  Thus   the  uncertainty 
analysis  is  focused  on  the  random  errors  due  to 
measurement errors. 

Each data item has been represented through a mean 
value and another two information items: a minimum 
and a maximum value (±Δ), or a standard deviation 
(s)  and  a  probability  distribution.  This  information 
was obtained from a literature review, where it has 
been  possible to  find useful  references,  or  inferred 
through  considerations  about  the  error  propagation 
rules, driven by good sense and experience (Table 1).

The assumptions on input uncertainty will  have an 
influence  on  the  results  of  sensitivity  analysis. 
However  it  is  believed  that  the  methodology 
provided by the Morris Method is robust enough in 
that sense, although it may need confirming through 
additional analyses. 

A discussion on the uncertainty relative to the main 
parameters follows.

Dimensions can be well represented by a log-normal 
distribution with a standard deviation of 1% of the 

mean  (Corrado  and  Mechri  2009).  However,  this 
kind of distribution, for small standard deviation, can 
be  well  approximated  by  a  normal  distribution 
(Macdonald  2002),  which  is  more  manageable. 
Therefore,  dimension uncertainty has been assumed 
to be normally distributed with a standard deviation 
of 1%.

The  parameters  which  are  product  or  quotient  of 
dimensions (areas, volumes, frame factors and aspect 
ratios)  have  been  characterized  by  a  log-normal 
distribution  (Macdonald  2002) with  as  standard 
deviation the sum of the standard deviations relative 
to the parameters involved in the relationship.

Infiltration  rate  represents  a  difficult  parameter  to 
identify,  characterized  by  high  uncertainty. 
Macdonald  (2002) investigated  the  infiltration  of  a 
large  series  of  buildings  through  simulations  and 
measurements.  He  concluded  that  it  is  possible  to 
represent  this  parameter  with a  normal  distribution 
having a standard deviation equal to about 30% of 
the mean. 

To  represent  the  thermal  mass  of  a  building,  the 
calculation method uses  the effective  thermal  mass 
(CM). Its calculation follows the approach in  BS EN 
ISO 13790 (2008); further details can be  found in 
SBEM (2011).  It  can  be  represented  with  the 
following expression:

C M= ρ∗C p∗t (3)

where  ρ is the density of the material (kg/m3),  Cp is 
the  specific  heat  (J/kgK)  and  t is  the  effective 
thickness of the element (m). The physical variables 
in  the  equation  can  be  described  by  normal 
distributions. The materials have been considered dry 
and the effect  of the moisture neglected, since that, 
although  it  could  be  significant,  is  not  easy  to 
quantify. Thus it has been possible to consider errors 
equal  to  1%,  3%  and  12.5%  relatively  to  density, 
thickness and specific heat, according to Macdonald 
(2002).  Applying the error  propagation rules  it  has 
been possible to estimate a global error involved in 
the  datum equal  to  about  20%.  Thus  the  effective 
thermal  mass  has  been  represented  as  normally 
distributed with a standard deviation of 7%.

The thermal transmittance (U-value) is a function of 
the  material  conductivity,  of  the  internal  surface 
resistance (Rsi), and external surface resistance (Rse). 
Rsi can be assumed as constant since it  depends on 
the  internal  environment  which  can  be  considered 
stable,  especially  in  the  quasi-steady-state  method 
within  the  Standard.  Rse,  instead,  varies  with  the 
changing  weather  conditions,  especially  wind 
velocity and direction. Hence,  it  is evident that  the 
uncertainties  related  to  material  conductivity  and 
climatic conditions should be considered. An ad-hoc 
analysis in that sense by Corrado and Mechri (2009) 
investigated  the  main  building  components  of  a 
typical house in Turin (Italy). Even though the results 
of such analysis are strictly related to that particular 



building  they  can  be  used  to  infer  a  suitable 
distribution  and  a  standard  deviation.  Corrado  and 
Mechri (2009) found the thermal transmittances to be 
normally  distributed,  with  standard  deviation 
between 12-13% for  the external  walls,  the ground 
floor and the roof, and equal to about the 3% for the 
glazing components. In order to generalize these data 
and after having considered the results provided by 
Dominguez-Munoz  et  al.  (2010),  the  values  were 
approximated  to  15% for  walls,  ground floors  and 
roofs and to 5% for the glazing elements.

SBEM follows the methodology explained in the BS 
EN  ISO  10211  (2007)  to  calculate  the  effects of 
thermal  bridges.  The uncertainties  relative  to  these 
elements  are  great  and  of  a  different  nature. 
Furthermore very few studies have been done in that 
sense.  An  interesting  experiment  is  described  by 
Martin et al. (2012). They compared the results from 
a calculation done following the  BS EN ISO 10211 
(2007) method, against the measurements relative to 
a  guarded  box experiment.  The difference  between 
the two was about 8%. This has been assumed as the 
possible  error  involved  in  the  definition  of  the 
thermal  bridge  linear  transmittances  (Ψ-values). 
These  parameters  were  represented  by  an  even 
distribution  with Δ = ±10%.  

The building services (mainly HVAC and HWS) are 
described  through  their  seasonal  efficiencies.  This 
parameter is a cumulative function of the generator 
efficiency and the distribution system losses during a 
typical heating or cooling season. The former has to 
be  input  by  the  assessor,  while  the  latter  are 
characterized by choosing the right class depicted by 
the  CEN  classification.  Therefore  only  the 
uncertainty  in  generator  efficiency  was  considered. 
Unfortunately in this case it has not been possible to 
collect  detailed  information  for  each  system. 
However  the  Standard  BS EN 303-5  (1999) states 
that, for boilers, the efficiency has to be determined 
within  a  tolerance  of  ±3  %.  This  value  has  been 
confirmed by other studies (Heo et al. 2012) and has 
been considered suitable to represent the uncertainty 
relative to the seasonal efficiency of generators.  

Simulation process

The Morris  Method and  the  Monte  Carlo Analysis 
were  implemented  in  R  and  Python  scripts  and 
applied to the two considered cases.

The work-flow followed the steps listed below:

1. The  Morris  Method  was  run  according  to  the 
defined uncertainties (Table 1: uncertainty SET-0) 
and the ee for each input parameter was calculated.

2. For  each  SBEM  output  the  variables  were 
classified and ordered following the classification 
suggested by Garcia Sanchez et al. (2012)  defined 
previously.  The  MIP  and  LIP  were  determined 
according  to  the  heuristic  principle  described 
previously.

3. By comparing the results achieved in the previous 
step, two general sets of MIP and LIP were defined 
for  each  one  of  the  two  models.  In  turn,  these 
general  lists  were  integrated  in  order  to  achieve 
sets of MIP and LIP applicable in both the cases 
(Table 1).

4. Three  Monte  Carlo  simulations  involving 
variations respectively in all the inputs, MIP and 
LIP were run, in order to confirm the findings from 
the former step (Table 1: uncertainty SET-0).

5. The  possibility  of  approximating  the  LIP  was 
investigated by dividing these parameters into two 
groups: 

a. FIXED-LIP: coefficients  mainly relative to the 
building services, for which the uncertainties are 
low and suitable approximated values could be 
easily  found  through  technical  specification  or 
literature (Table 1);

b. APPROX-LIP:  physical  properties  and 
dimensions  of  secondary  importance  for  the 
models,  which could be  defined  within certain 
ranges (Table 1).  

6. The  uncertainties  relative  to  the  APPROX-LIP 
were  increased  as  shown  in  Table  1,  obtaining 
three  sets  of  uncertainty  values  (table  1:  SET-0, 
SET-1 and SET-2).

7. Monte  Carlo  simulations  for  SET-1  and  SET-2 
were run.

In order to  verify the global linear character  of the 
calculation method, the overall standard deviation of 
the unscaled SBEM output (energy demand, energy 
consumption,  asset  rating) provided  by  the  Monte 
Carlo  simulations  were  compared  against  the  Root 
Sum of Square (RSS) of the singular effects relative 
to the parameters:

RSS=√∑i=1

n
x̄ i∗s% , i∗μns,i

* (4)

where  x̄ i is  the  input  (mean)  value  of  the  i-th 
variable,  s%,i is the standard deviation as percentage 
of  the mean of the i-th variable, μ*

ns,i is the μ*
i of the 

elementary  effects  for  the  i-th  variable  calculated 
from unscaled inputs and outputs.  

RESULT ANALYSIS
In  this  section  the  results  relative  to  total  energy 
demand, consumption and building asset rating will 
be discussed. These outputs are defined as follows.

The energy demand is the energy need for  heating 
and cooling. In particular the heat to be delivered to 
or extracted from a conditioned space to maintain the 
intended temperature during a given period of time. 
The energy  consumption is  considered  as  the total 
consumption  due  to  heating,  cooling,  lighting,  hot 
water production and auxiliary energy (BS EN ISO 
13790:2008). The building asset rating represents the 
ratio  of the CO2 emission from the actual  building 
(BER), in comparison to a ”Standard Emission Rate” 



(SER) multiplied by 50. SER is derived applying a 
fixed improvement  factor  to the emission from the 
”reference”  building  (iSBEM  2012,  NCM  2010, 
SBEM 2011).

In particular only the data achieved for Case 2 will be 
described  since  the  two  cases  were  in  substantial 
agreement and it is the most exhaustive one. 

Morris  Method:  total  energy  demand, 
consumption and building asset rating

The total  energy  demand (Figure  1)  showed linear 
and monotonic effects for most of the MIP.  The LIP 
behave  in  a  similar  manner,  with  the  majority  of 
them  having  a  monotonic  influence.  Non-linear 
effects  are  caused  by  glass  transmittances,  internal 
wall areas, zone areas (Ids: 4, 3 and 14). 

All  the  most  important  variables  relative  to  the 
energy  consumption  (Figure  2)  have  linear  and 
monotonic effects. Only the thermal transmittance of 
the  external  envelope  (Id:  1)  has  a  non-linear 
influence  on  the  output. Considering  the  least 
important inputs, these irregular influences are shown 
by the factors relative to the effective thermal mass, 
air  permeability  of  the  envelope,  efficiency  of  the 
heat  recovery  system,  glass  thermal  transmittances, 
external  wall  areas,  internal  wall  areas  and 
transmittances (Ids: 2, 20, 4, 38, 44, 3).

Table 2

Case 2, results from ALL, MIP and LIP Monte Carlo  

simulations ( x̄ : mean, s: standard deviation) 

OUTPUT INDEX ALL MIP LIP

Energy 
demand

s (MJ/m2) 3.758 3.566 0.872

s/ x̄ 0.016 0.015 0.004

RSS (MJ/m2) 3.390 3.336 0.054

Energy
consumption

s (MJ/m2) 4.678 4.658 0.640

s/ x̄ 0.013 0.013 0.002

RSS (MJ/m2) 4.313 4.270 0.043

Building
asset rating

s 0.581 0.594 0.000

s/ x̄ 0.016 0.016 0.000

RSS 0.439 0.434 0.005

The  number  of  non-linearities  and  non-monotonic 
effects increases for the building asset rating (Figure 
3).  All the parameters have at least a non-monotonic 
effect.

Monte Carlo Analysis: all parameters, MIP and 
LIP

The  simulations  involving  variations  in  all  the 
parameters and in the MIP have standard deviations 
very close to each other, while those regarding only 
variations  in  the  LIP  have  values  of  standard 
deviation  that  can  be  considered  negligible. 
Furthermore the RSS has been shown to be a good 
approximation  of   the  overall  uncertainty  defined 
through the Monte Carlo Analyses (Table 2).

Fundamentally  the  results  just  described  show that 
the two main models could be approximated by two 
meta-models  depending  only  upon  the  most 
important parameters without any significant loss of 
accuracy. Thus these inputs need to be defined with a 
good degree of precision, while it might be possible 
consider  the  others  (LIP)  in  an  approximate  or 
simplified way.  

Figure 2: Case 2, total energy consumption - ee from 
scaled data

Figure 3: Case 2, building asset rating - ee from 
scaled data

Figure 1: Case 2, total energy demand - ee from 
scaled data 



Monte Carlo Analysis: increased uncertainties 

The incremented uncertainties for the APPROX-LIP, 
do  not  lead  to  any  relevant  growth  of  the  global 
uncertainties,  especially  for  Case 2.  Comparing the 
different values of standard deviation, increments are 
always less than or equal to the 1.5% of the mean 
(Table 3).

Table 3

Case 2, results from SET-0, SET-1 and SET-2 Monte  

Carlo simulations ( x̄ : mean, s: standard deviation) 

OUTPUT INDEX SET-0 SET-1 SET-2

Energy 
demand

s (MJ/m2) 3.758 3.856 4.737

s/ x̄ 0.016 0.016 0.020

Energy
consumptio
n

s(MJ/m2) 4.678 4.59 4.798

s/ x̄ 0.013 0.013 0.013

Building
asset rating

s 0.581 0.594 0.629

s/ x̄ 0.016 0.016 0.017

Final results

The previous result show that it should be possible to 
replace  the  “most  exact”  set  of  input  data  (i.e.  in 
these examples SET-0), with an “approximated” one 
(i.e.  in these examples SET-1 and SET-2),  without 
sensibly affecting the result of the calculation.

The  possible  increment  in  the  percentage  errors 
produced could be calculated as follow:

IE%,i,n=2∗( s%,i,n−s%,i,0 ) (5)

where: 

− s%,i,0 is the standard deviation as percentage of the 
mean, relative to the probability distribution of the 
i-th SBEM output produced by the “most exact” 
set of data available; it represents the unavoidable 
amount of uncertainty;

− s%,i,n is the standard deviation as percentage of the 
mean, relative to the probability distribution of the 
i-th SBEM output produced by the “approximated” 
set  of  data;  it  represents  the  sum  of  the 
unavoidable  amount  and  the  increment  in  the 
uncertainty due to the approximations made.

For the two considered cases and approximated sets, 
the  increments  in  uncertainty  are  not  significant, 
especially for Case 2 (Table 4).

CONCLUSIONS
A series of sensitivity analyses at the local and global 
scale were carried out on SBEM, for two well known 
cases. In particular the Monte Carlo Analysis and the 
Morris  Method  were  employed,  the  former  as  a 
global method and the latter as a screening method.
It was possible to clearly identify the main influences 
of  the  model  input  factors  and  divide  the  factors 

between  most  important  (MIP)  and  least  important 
(LIP) (Table 1).

Table 4

Error increments, as percentages of the mean values,  
for the two cases and the three outputs

CASE OUTPUT SET-1 SET-2

Case 1 Energy demand 0.02 0.05

Energy consumption 0.01 0.02

Building asset rating 0.01 0.03

Case 2 Energy demand 0.00 0.01

Energy consumption 0.00 0.00

Building asset rating 0.00 0.01

At a general level the calculation method showed an 
almost  linear  character.  In  particular,  the  most 
influencing  factors  have  linear  and  monotonic 
influences  on  SBEM's  outputs.  That  is  also 
confirmed by the good agreement between the RSS 
and the overall values of standard deviation returned 
by the Monte Carlo simulations. 

The opportunity to approximate the two main models 
as  meta-models  depending  only upon the  MIP has 
been  demonstrated,  as  well  as  the  possibility  of 
considering the least important ones in a simplified 
way.  In  particular  the  LIP  parameters  have  been 
divided,  depending  on  the  kind  of  possible 
approximations, in least important parameter that are 
fixed  (FIXED-LIP  in  Table  1)  and  least  important 
parameters that can be approximated within defined 
ranges  (APPROX-LIP  in  Table  1).  In  both  cases 
studied,  considering  increased  uncertainties  for  the 
identified LIP produces negligible increments in the 
standard deviations and errors relative to the model 
responses.  

These results open the way to further simplifications 
in  the  input  procedure  in  iSBEM.  In  particular 
simplified input methods could be implemented for 
some of  the less  important  parameters,  considering 
the determined tolerable increased uncertainties. For 
example  the  window area  could  be  specified  as  a 
percentage of the wall as high, medium or low and 
the  internal  wall  areas  could  be  automatically 
calculated as functions of the internal wall length and 
height  of  the  zone,  since  any  possible  irregular 
shapes should not produce significant errors.

BRE are currently considering the results from this 
study, their applicability to a wider range of building 
typologies  and  the  potential  for  implementation  of 
some of the simplifications suggested in the paper.

More generally a methodology which employs  local 
and  global  sensitivity  analysis  techniques, 
specifically  the  Morris  Method  and  Monte  Carlo 
Analysis,  to  guide  user  interface  development  of 
energy  certification  and compliance  software  tools, 
has been presented.



The  Morris  Method  can  effectively  and  efficiently 
identify  the  characteristics  and  the  extent  of  the 
influences for the input parameters and screen them. 
The  Monte  Carlo  Analysis  is  a  good  method  for 
assessing the effects of approximations on groups of 
parameters. It should be noticed that for calculations 
and  models  for  which  the  majority  of  the  most 
important  parameters  have  linear  or  monotonic 
effects, the results of the Monte Carlo Analysis could 
be well approximated by the Root Sum Squares  of 
the  singular  effects  involved,  saving  computational 
time.

The method described in this paper is  flexible and 
not software dependent and in addition to guiding the 
design of user interfaces, the approach could be used 
to  develop  guide  lines  for  all  the  data  input  and 
collection processes. For example the training of the 
assessors  could  be  structured  depending  on  the 
tolerable  uncertainty  values  resulting  from  the 
analysis,  so that  the focus  would be proportionally 
distributed  depending  on  the  influence  and 
importance of each input parameter.

It  should be  said  that  the  design and  definition of 
procedures  and  tools  involved  in  the  analysis  of  a 
multitude of buildings should be based on relevant 
statistically  results.  Thus  the  methodology  in  this 
paper  should  be  applied  to  a  statistically  relevant 
sample of buildings to confirm the results presented.  

Furthermore it is recognized that there is a significant 
gap  between  predicted  and  real  data.  In  future 
developments a similar approach could be adopted in 
calibration studies employing metered data in order 
to see how and to what extent different parameters 
contribute to the mismatch between predictions and 
reality.

Finally,  the  assumptions  made  in  undertaking 
uncertainty  analysis  in  terms  of  the  assumed 
distribution,  standard  deviations  and  uncertainty 
ranges could have an influence on the output of the 
Morris Method and Monte Carlo Analysis. However 
this  issue  can  easily  be  overcome,  by  defining 
suitable  uncertainty  structures  for  the  data,  in 
agreement with the various parties involved.   
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