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Abstract 

 

In planar micropolar elasticity theory the degree of micropolarity exhibited by a loaded 

heterogeneous material is quantified by a dimensionless constitutive parameter, the coupling 

number. Theoretical predictions of this parameter derived by considering the mechanical 

behaviour of regular, two dimensional lattices with straight connectors suggest that its value 

is dependent on the connectivity or topology of the lattice with the coupling number in a 

square lattice predicted to be noticeably higher than in its hexagonal counterpart. A second 

constitutive parameter reflecting the intrinsic lattice size scale, the characteristic length, is 

also predicted to be topology dependent. In this paper we compare the behaviour of 

alternative two dimensional heterogeneous materials in the context of micropolar elasticity. 

These materials consist of periodic arrays of circular voids within a polymeric matrix rather 

than a lattice of straight connectors. Two material variants that differ only in their matrix 

topology are investigated in particular. Values of the additional micropolar constitutive 

parameters are obtained for each material from both experimental tests and finite element 

analyses. The values determined for these parameters, particularly the coupling number, 

suggest that their topological dependence differs appreciably from the theoretical predictions 

of the lattice models. 
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1.0 Introduction 

 

Higher order elasticity theories are believed to describe the behaviour of loaded 

heterogeneous materials since they acknowledge that the nature of the underlying 

microstructure influences overall mechanical response. This is particularly important when 

microstructural size scale approaches the overall scale. Classical or Cauchy elasticity theory 

does not acknowledge the effect of microstructure and is therefore unable to predict some of 

the more intriguing behaviour exhibited by heterogeneous materials such as the dependence 

of stiffness on size, the dispersion of propagating elastic waves and the dependence of stress 

concentrations or intensities on the sizes of the discontinuities producing them. In general 

terms higher order theories acknowledging microstructural influence have evolved by 

enhancing first order, classical theory through the incorporation of either strain, or sometimes 

stress, gradients or by incorporating additional, independent degrees of freedom. These two 

approaches are systematically compared by Tekoglu and Onck (2008) with the latter being 

adopted in micropolar or Cosserat elasticity where an independent rotational degree of 

freedom, the microrotation, augments the conventional displacement degrees of freedom of 

classical elasticity. Associated with the microrotation is an additional stress quantity, the 

couple stress, which is related to microrotation derivatives or curvatures through an 

additional constitutive parameter, the couple modulus, which in turn can be related to the 

conventional moduli governing dilatational and distortional deformation through a length 

scale parameter, the characteristic length, a further constitutive parameter common to many 

higher order theories. The presence of the couple stresses acting on a material element relaxes 

the symmetry requirement imposed on orthogonal shear stresses, they need no longer be 

complementary since any imbalance can be redressed by the couple stresses. The level of 

shear stress asymmetry is quantified by a further constitutive parameter, the coupling number, 

thereby reflecting the degree of micropolarity exhibited by the material. The coupling number 

is dimensionless but not independent since it can be expressed in terms of other constitutive 

parameters. Additionally, its range is bounded, the lower bound being the classically elastic 

case while at the upper bound the microrotation is equal to the conventional rotation, a case 

usually referred to as couple stress elasticity or sometimes constrained Cosserat elasticity. 

 

While the bounds on the coupling number can be determined from energetic constraints, 

identifying likely values for genuinely micropolar materials is more challenging. One 

theoretically based approach is to consider the behaviour of a heterogeneous material that can 

be represented by a regular, periodic lattice of elastic connectors or elements. The lattice 

elements are usually straight, of uniform cross section, connected at their ends only and all of 

the same length. The elements may possess only axial or, in addition, bending and possibly 

transverse shear stiffness. One motivation for investigating such structures is to understand 

the likely behaviour of materials at an atomic or crystal lattice scale. The notion of 

representing a material in this manner dates back at least as far as Hrennikoff (1941) if not 

earlier. A comprehensive review of such investigations throughout the twentieth century is 

provided by Ostoja Starzewski (2002). The approach that is usually adopted in determining 

the behaviour of the material is to firstly establish the static mechanical response of some unit 

cell representing a portion of the lattice. This is normally achieved through total potential 

energy based arguments as adopted by for instance by Askar and Cakmak (1968), although a 

direct, matrix displacement type approach as utilized by for example Wang and Stronge 

(1999) is also applicable. The equivalence of these two approaches is indicated by Bažant and 

Christiansen (1972). Once the response of a unit cell has been identified the constitutive 

behaviour of the continuous material that the lattice purports to represent is then determined 

by a homogenization process. The relevant constitutive parameters can then be ascertained 



from the behaviour thus determined. Noor and Nemeth (1980) and others indicate that an 

additional motivation for equating the behaviour of lattices to that of higher order continua is 

in analysing large scale loaded structures with regular, repeated elements when access to 

digital computing facilities on which to perform the necessary structural analysis by 

numerical means such as the finite element method is unavailable. This motivation may have 

been relevant when such facilities were not widespread and although it now appears obsolete, 

arguably it may still have some relevance in situations where expertise in utilizing finite 

element based structural analysis software is unavailable. It is also currently relevant in 

analysing those materials possessing intrinsically three dimensional heterogeneity where the 

explicit representation of the microstructure by a finite element discretization results an 

analysis that would challenge all but the most advanced of present day high performance 

computing facilities. A third motivation for investigating lattices is to provide a means of 

determining the behaviour of fabricated materials with a periodic structure discernible at the 

macro scale such as composites and metallic and polymeric cellular honeycomb materials in 

which the geometry of the microstructure is in essence defined in two dimensions and simply 

extruded in the third direction. Such materials are now being exploited extensively in 

applications such as sandwich panel construction techniques because of the weight saving 

opportunities they afford. Thus two dimensional hexagonal lattice structures representative of 

honeycombs have been investigated by amongst others Gibson and Ashby (1997) and Wang 

and Stronge (1999) with expressions for the equivalent or micropolar modulus being derived 

in terms of the element constitutive properties and geometry. Spadoni and Ruzzene (2012) 

provide a consistent list of expressions for the additional micropolar constitutive properties, 

namely the characteristic length and coupling number, of square, equilateral triangular and 

hexagonal lattice structures in terms of the element length and thickness, the list being based 

on the previous work of Banks and Sokowlowski (1968), Dos Reis and Ganghoffer (2011) 

and Wang and McDowell (2004). Pertinent to this work are the expressions for the 

characteristic length and in particular the coupling number of materials with square and 

hexagonal lattices since they imply that for a given element thickness to length ratio there 

will be a noticeable difference in these additional properties between these material types. 

Suiker et al. (2001) considered the effect of lattice topology on the constitutive parameters 

but in the dynamic rather than static case. They concluded that as the macroscopic 

lengthscale, quantified by wavelength, is reduced towards the microscopic lengthcale 

associated with the lattice the agreement between the lattice model and the micropolar 

continuum description diminishes because the characteristic length parameter becomes 

increasingly more sensitive to lattice topology. Chung and Waas (2009) investigated the 

behaviour of a specific hexagonally packed polycarbonate honeycomb comprised of circular 

rather than polygonal cells. This particular honeycomb has some resemblance to one of the 

materials considered here, the difference being that the honeycomb contains additional 

triangular shaped voids in the interstices between neighbouring cells. Using a combination of 

finite element and dimensional analysis of a representative volume they obtain expressions 

for the compliances of the honeycomb. The analysis assumes constrained micropolar 

behaviour since the microrotation is set equal to the macrorotation and as a consequence the 

derived value of the micropolar compliance is zero. Bigoni and Drugan (2007) considered the 

case of a heterogeneous material comprised of compliant circular inclusions within an 

isotropic matrix. When the inclusions are more compliant than the matrix the material 

exhibits Cosserat like behaviour and an analytical expression for the characteristic length is 

derived for the limiting case where the inclusions are voids. 

 

The additional constitutive parameters of micropolar elastic materials can also be determined 

experimentally by loading them and observing the resulting deformation. The customary 



approach, summarized by Lakes (1995), exploits the size effect forecast for such materials by 

attempting to measure the expected variation in stiffness with material sample size. In this 

method of size effects the constitutive parameters are then derived by interpretation of the 

observed variation using a known, usually closed form analytical, solution specific to the 

sample geometry and loading mode employed. This approach was successfully utilized by 

Yang and Lakes (1982) and Lakes (1983, 1986) to determine the micropolar constitutive 

properties of biological and fabricated materials respectively. The need for careful sample 

preparation was emphasised by Anderson and Lakes (1994) since any retained surface 

damage would result in increased compliance that would corrupt the observed size effect. 

Moreover, since the scale of the heterogeneity in the materials investigated often necessitated 

the testing of small samples, Lakes (1995) advocated loading by electromagnetic means or 

dead weights in order to negate friction and contact effects associated with conventional 

mechanical loading which would also compromise results. Lakes (1995) acknowledges that 

despite attempting to circumvent these effects data obtained from small samples is 

nonetheless still subject to error and recourse to numerical methods may be required to 

minimize the deviation between measured data and known solution if values for the 

additional elastic constants, particularly the coupling number, are to be identified reliably. 

Beveridge et al. (2013a) subsequently applied the method of size effects in investigating the 

behaviour of a material consisting of an aluminium alloy matrix perforated by a regular array 

of circular voids. The identified behaviour was successfully interpreted within the context of 

micropolar elasticity using a simplification of the analytical solution for the deflection of a 

loaded rectangular sectioned micropolar beam, quoted by Lakes (1995), to determine the 

characteristic length of the material. The scale of the heterogeneity introduced into the matrix 

was deliberately chosen to facilitate loading on conventional mechanical testing equipment. 

The variation in stiffness with sample size was also measured at a reduced slenderness where 

shear deformation would be more significant. The coupling number was then identified from 

this variation by an inverse approach based upon minimizing the difference between 

experimental measures of stiffness and predictions obtained from a numerical finite element 

analysis in which the coupling number could be adjusted. Beveridge et al. (2013a) argue that 

the deliberate creation, testing and analysis of such a material is more than simply didactic; 

the consistency of the constitutive property data obtained through independent testing and 

finite element analysis reinforces the credibility of the size effect methodology in the more 

challenging case of materials with genuinely three dimensional heterogeneity where only an 

experimental approach is viable since analysis is presently unrealizable in practice for the 

reasons already outlined. Acknowledging this Waseem et al. (2013) employed a similar 

approach albeit in a circular ring sample geometry rather than a straight beam to identify size 

effects in a material comprised of an acrylic polymer matrix with the same topology. For 

consistency, micropolar elasticity theory was again used to translate the observed effects into 

the relevant constitutive properties; the characteristic length and coupling number. 

Interestingly, the value for the characteristic length when normalized with respect to the scale 

of the heterogeneity, which was significantly smaller in the ring samples, was comparable to 

that obtained by Beveridge et al. (2013a) for the beam samples while the value of the 

coupling number identified was also remarkably similar. These comparisons, establishing the 

effect of geometric scaling and matrix modulus on both the characteristic length and coupling 

number parameters, accord with the predictions of lattice models. Such models also predict 

that these constitutive parameters will depend on the connectivity of the lattice elements. In 

this paper the veracity of this further prediction to the perforated materials is considered by 

examining the effect that altering the matrix topology has upon the parameters. 

 



2.0 Constitutive Behaviour of Micropolar Elastic Materials and the Role of the 

Coupling Number 

 

In the two dimensional plane stress case the constitutive equations of a linear, isotropic 

micropolar material introduced by Eringen (1966, 1999):- 
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according to Lakes and Nakamura (1995). In equations (1) and (2) τij and mij, represent the 

force stresses and couple stresses respectively, εij are the conventional strain components of 

classical elasticity, δij is the Kronecker delta symbol and eijk is the permutation tensor. The 

microrotations, k, are independent of the conventional macrorotations, θk (=eijkuj,i/2) 

associated with displacement components ui. In obtaining equations (3) the four pertinent of 

the six independent elastic moduli, λ, μ*, κ, α, β, and γ within (1) and (2) are reinterpreted in 

terms of four engineering or technical constants specified by Gauthier and Jahsman (1975) 

thus:- 
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The first two of these constants correspond to the Young’s modulus and Poisson’s ratio of the 

micropolar material. As in the classical case they can be determined by uniform 

unidirectional loading, the subscript M being used to differentiate them from their classical 



equivalents. The third constant, lb, termed the characteristic length in bending, recognises the 

intrinsically nonlocal nature of micropolar elasticity by quantifying the range of the couple 

stresses through their relationship to the microrotation gradients or curvatures. Lattice 

representations of micropolar materials indicate that the characteristic length should reflect 

the length scale associated with the inherent heterogeneity. From equations (3) it is easily 

shown that the asymmetric component, (τxy-τyx)/2 , of the orthogonal shear stresses, which 

need not be complementary, depends on the fourth constant, the coupling number, N, while 

the symmetric component, (τxy+τyx)/2 , is independent of it. The coupling number thus 

quantifies the level of shear stress asymmetry and thereby the degree of micropolarity 

exhibited by the material. 

 

Using constitutive equations (3) Waseem et al. (2013) derives an expression for the stiffness, 

K, of a diametrically loaded slender micropolar ring:- 
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using the approach presented previously by Huang et al. (2000) for the case of a straight 

beam loaded in pure bending. The thickness, t, represents the difference between the inner 

and outer radii of the ring while the mean radius, R, is their average and b is the breadth of 

the ring in the transverse direction. The additional subscript F recognises that any value of 

Young’s modulus, EFM, derived from ring stiffness is based on a flexural loading mode in 

which strain varies linearly rather than unidirectional one with a uniform state of strain and 

therefore implicitly assumes that the dependence of stress on strain remains linear across the 

tensile and compressive range so the modulus will be independent of the state of strain. 

Equation (8) assumes that bending stress varies linearly and couple stress is constant on any 

ring cross section. Transverse displacements and microrotations about orthogonal axes in the 

plane of the ring are also ignored. These assumptions were previously employed by 

Beveridge et al. (2013a) in deriving an analogous analytical expression for the stiffness of a 

straight slender beam loaded in three point bending the validity of which was then verified by 

both experiment and finite element analysis. It should be noted that the characteristic length, 

lc, in (8) is a factor of √12 greater than lb of (6). The term in square brackets can be regarded 

as a factor that corrects the stiffness of a classically elastic slender ring to account for any 

size effect that may be exhibited in the micropolar case. This correction implies that for rings 

with the same aspect ratio, R/t, stiffness should vary linearly with the reciprocal of thickness 

squared, 1/t2, and that the flexural modulus and characteristic length can be determined from 

the intercept and gradient of the variation respectively. The validity of the correction was 

again confirmed through both experimental testing and detailed finite element analysis of 

slender ring samples containing periodic arrays of circular voids.  Moreover, the 

characteristic length values derived subsequently using equation (8) and the stiffness 

variations observed in sample sets containing voids of different diameters were found to vary 

with void diameter in accordance with the earlier theoretical prediction of Bigoni and Drugan 

(2007). 

 

Equation (8) does not incorporate the coupling number and therefore does not distinguish 

between the couple stress and general micropolar cases, implying that for a slender ring there 

will be little difference in the size effect demonstrated in the two cases. The legitimacy of this 

implication is investigated further in this paper. To determine the coupling number of the 

perforated acrylic material Waseem et al. (2013) adopts a procedure akin to that used by 



Beveridge et al. (2013a) that is based on testing less slender samples in which shear 

deformation is more significant. A size effect is again observed but numerical computations 

using a finite element approach incorporating micropolar constitutive behaviour indicate the 

intensity of this effect is more sensitive to the coupling number than it is in the slender 

sample case. The finite element procedure is thus used to identify the particular coupling 

number that minimizes the difference between the observed and numerically computed size 

effect. Interestingly, the coupling number is found to be largely independent of void size. 

However, the effect of changing void distribution and thereby matrix topology on the 

coupling number is not investigated. 

 

Table 1 lists the characteristic length and coupling number previously quoted by Spadoni and 

Ruzzene (2012) for square and hexagonal lattices with each parameter depending on the 

length, L, and depth, d, of the beam elements that constitute the lattice. In each case the 

characteristic length evidently depends on the lattice spacing as reflected by element length. 

While the characteristic length is also weakly dependent on element aspect ratio, L/d, when 

the aspect ratio is large it is predicted to be a factor of approximately √2 smaller in the 

hexagonal case than in square case even though the offset between the centres of adjacent 

lattice interstices is √3 greater in a hexagonal lattice for a given element length. The coupling 

number also depends on the nature of the lattice and is expected to be √(3/2) times smaller in 

the hexagonal case at large aspect ratio. 

 

In the acrylic polymer matrix materials investigated by Waseem et al. (2013) the connectivity 

of the matrix mirrors that of a hexagonal lattice as illustrated in figure 1. However, it is 

unlikely that the matrix itself is adequately described by a hexagonal lattice of straight 

slender elements. This is evidenced by the characteristic length and coupling number values 

obtained for these materials which are notably different from the predictions of table 1. 

Nevertheless, the dependence of the coupling number on matrix connectivity as predicted for 

lattices according to table 1 might also be reflected in the behaviour of the acrylic matrix 

materials. Since this was not considered by Waseem et al. (2013) the objective of the present 

paper is to determine whether such dependence is observed in practice. To achieve this 

objective further acrylic ring samples are manufactured and tested. However, these additional 

samples are distinct from their predecessors in one specific aspect; the arrangement of voids 

within the matrix is altered such that the void centres are now located on a quadrilateral rather 

than a triangular array. The connectivity of the matrix thus mirrors that of a square rather than 

a hexagonal lattice as shown in figure 1. 

 

3.0 Manufacture and Mechanical Testing of Ring Samples 

 

Three sets of ring samples were manufactured from 6mm deep Oroglas® clear acrylic sheet. 

The first set of four samples was machined from the sheet using the computer numerically 

controlled (CNC) milling equipment and machining procedure employed previously. These 

four samples had thicknesses, t,  of 3.175, 6.35, 9.525 and 15.875 mm and corresponding 

mean radii, R,  of 25.4, 50.8, 76.2 and 127.0 mm. All four samples were thus geometrically 

similar with a common aspect ratio, R/t, of 8. No voids were machined into these samples, 

they were manufactured to enable the flexural modulus of the acrylic matrix material to be 

determined from their measured stiffnesses. A further set of four samples was manufactured 

to the same dimensions as the first set. However, in this set concentric circumferential bands 

of voids were also machined into the individual samples with the number of bands increasing 

from one in the smallest sample through two and three in the intermediate sized samples to 

five in the largest sample. The diameter of individual voids was 1.588 mm. However, unlike 



the samples manufactured previously in which an angular offset between consecutive bands 

was incorporated to locate the void centres on the triangular array illustrated in figure 1 the 

present set of samples contained no such offset. The void centres were thereby located on a 

quadrilateral array as shown in figure 1. Detailed finite element analysis of a material 

comprised of voids located on a square array indicated that this material exhibits nearly 

planar isotropy and is therefore transversely isotropic. In order to bestow such behaviour on 

the perforated ring samples the average spacing of the voids within each circumferential band 

was set approximately equal to the radial spacing. In addition, the smallest sample in the 

present set is geometrically identical to its predecessor since it contains only a single 

circumferential band of voids.  A third set of samples was manufactured with the same 

thicknesses, t, as the first two sets but with each of their mean radii, R, reduced by a factor of 

two. Each sample in this set thus had an aspect ratio, R/t, of 4. 

 

Each of the samples was tested using an Instron 5969 electromechanical tensile testing 

machine with a 50kN load cell. Each specimen was loaded to 25N at a constant displacement 

rate of 1mm/min. The load cell sensitivity was adjusted to ensure accurate load measurement 

over the applied load range. Each sample was loaded via diametrically opposed pins placed in 

contact with the sample inner radius and also connected to the machine grips as shown in 

Figure 2. A video extensometer incorporating an infrared camera was employed to detect the 

position of the pins during loading. In order to determine sample displacement from the 

apparent strain recorded by the extensometer an initial gauge length was identified by 

recording the pin separation when loading commenced. Sample displacement throughout the 

subsequent loading could thus be determined from the product of the apparent strain recorded 

by the extensometer and the initial gauge length. After each sample had been loaded it was 

rotated by 90° relative to the pins and reloaded in order to negate any effect of manufacturing 

inaccuracies and obtain an average stiffness value. After loading each sample the data 

recorded by the testing machine acquisition system was used to graphically display the 

variation in load with increasing displacement. Typically a brief period of nonlinear 

behaviour after initial load application was followed by linear behaviour throughout the 

subsequent loading. Sample stiffness was determined from the gradient of the linear portion 

of the load displacement variation. 

 

4.0 Finite Element Modelling of Ring Samples 

 

One widely adopted approach to modelling heterogeneous materials is to define a 

representative volume element (RVE) of sufficient size that its constitutive behaviour will 

hopefully provide a satisfactory continuum description of the material as a whole. 

Heterogeneity within the volume is typically represented in detail within a finite element 

model which is then loaded appropriately to determine the deformation of the volume from 

which its constitutive behaviour can be derived. Overall material behaviour can then be 

inferred from volume behaviour. It is well known that resulting constitutive behaviour may 

depend on both the selection of a suitably sized volume and the degree of model refinement 

used in representing the details of heterogeneity present within the volume. In the present 

work overall size together with the regular nature of the heterogeneity permits modelling of 

the complete sample thereby avoiding any potential difficulties associated with selecting and 

representing a suitable RVE. All samples were therefore modelled using the proprietary finite 

element software package ANSYS. Mesh construction commenced by defining a 

quadrilateral region with two straight, radially aligned edges and two curved, 

circumferentially orientated edges around a particular void. This region was then divided into 

four subregions by radial and circumferential lines passing through the void centre. Figure 3 



illustrates how the quadrilateral regions and the associated subregions were created around 

each of the voids within the geometric representation of the smallest sample containing only a 

single band of voids. Each of these subregions was then meshed using PLANE183 eight 

noded quadrilateral elements incorporating quadratic displacement fields. Figure 4 depicts the 

mesh constructed in a typical subregion. The ligament connecting the void edge to the 

radially aligned boundary of the subregion was apportioned into 7 element divisions. A mesh 

sensitivity study based on the model of a particular sample demonstrated that this level of 

mesh refinement was sufficient to ensure convergence of the predicted displacement field 

throughout the sample. Once the mesh around a particular void had been specified a mesh 

representing one quarter of the sample geometry was constructed by repeatedly generating 

the original mesh at suitable radial and circumferential increments and merging coincident 

nodes after each generation. Thus a structured mesh representing the quarter sample 

geometry of figure 3 was produced. Displacement constraints invoking symmetry were 

applied to the radially aligned boundaries of the quarter sample mesh as shown in figure 3. 

An outward radial point load was applied to the node located at the intersection of the inner 

edge of the mesh and one of the symmetry boundaries as also shown in figure 3. Sample 

stiffness was determined from the value of this load and the average radial displacement 

along the symmetry boundary intersecting the loading point. Stiffness was determined from 

this average measure of displacement to avoid introducing any error associated with local 

deformation at the load point itself. Radial displacement along the boundary was actually 

almost uniform except at the load point itself where it deviated slightly. 

 

5.0 Results 

 

5.1 Unperforated Ring Stiffness and Flexural Modulus of Oroglas Acrylic Polymer 

 

The average stiffness of the four unperforated Oroglas ring samples obtained from the load 

displacement data produced by mechanical testing was 19.23 Nmm-1. Although some 

variation in sample stiffness was observed this variation was independent of sample size and 

amounted to approximately 5% of the mean stiffness value implying that the rings behave in 

a classically elastic manner thus allowing equation 3 to be used to derive the flexural 

modulus of the homogeneous Oroglas material after prescribing lc =0. The mean value of the 

flexural modulus derived accordingly was 2.99 GPa. This value compares extremely 

favourably with the flexural modulus of 2.94 GPa obtained previously by Waseem (2013) for 

a similar acrylic polymer material, Altuglas and implies that the stiffness data reported here 

for the perforated samples can be compared directly with data reported earlier. 

 

5.2 Measured Stiffness of High and Low Aspect Ratio Perforated Rings 

 

The measured stiffness of each ring in both the high and low aspect ratio sample sets is 

reported in Table 2. The table also lists the stiffness of each of the equivalent acrylic samples 

tested previously by Waseem et al. (2013) in which the void centres were located on a 

triangular array rather than the quadrilateral array embodied in the present samples. Two 

observations are immediately evident from the listed data; firstly the present samples in both 

the high and low aspect ratio sets exhibit the same size effect as observed previously with the 

stiffness increasing appreciably with reducing sample size for each set. Furthermore, the 

stiffness of each of the present samples is similar to its previously tested counterpart and thus 

the extent of the size effect is comparable. 

 



The data listed in Table 2 are also presented in Figures 5 and 6 for the present high and low 

aspect ratio sample sets respectively. Each figure depicts the variation in stiffness with 

sample size as measured by the reciprocal of thickness squared, 1/t2. A linear fit has been 

superimposed on the experimentally determined data shown in figure 5 to indicate that the 

stiffness varies linearly with this sample size measure as implied by equation 8 thereby 

signifying that the perforated acrylic material may indeed behave as a micropolar continuum. 

The linear fit is subsequently used to derive values of the relevant constitutive properties, 

namely EFM and lc, contained within equation 8. Figure 5 also incorporates the measured 

stiffness data for the unperforated slender ring samples. Clearly the stiffness of each of these 

samples is greater than their perforated counterparts as might be expected. Moreover, the 

linear fit that has also been applied to these stiffness data indicates that the stiffness of the 

unperforated samples is evidently size independent implying that the stiffness variation in the 

perforated samples is a genuine effect associated with their heterogeneous microstructure 

rather than a consequence of other, macroscopic effects, such as the local distribution of 

stress in the vicinity of the load application point. The stiffness data for the low aspect ratio, 

R/t=4, samples displayed in figure 6 also appear to vary linearly with the sample size 

measure, 1/t2. The stiffness of each of these samples forecast by equation (8) using the 

constitutive properties derived from the linear fit to the high aspect ratio, R/t=8, ring data of 

figure 5 are also shown on figure 6. Equation (8) clearly overestimates the stiffness of each of 

these samples implying that they do not behave as slender rings and their increased 

compliance is due to unaccounted for shear deformation effects. Thus it is less 

straightforward to decide whether these data indicate behaviour consistent with the upper 

bound couple stress case or more general micropolarity since equation 8 is evidently 

inapplicable at this lower aspect ratio and therefore further interpretation is required.  

 

5.3 Predicted Stiffness of High and Low Aspect Ratio Perforated Rings 

 

The mean modulus value of 2.99 GPa, derived from experimental testing of the unperforated 

ring samples, together with the manufacturer’s stated value of Poisson’s ratio of 0.39 were 

assigned to each element within the FE meshes representing the matrix material of the 

perforated ring samples. Plane stress behaviour was assumed. Table 2 also lists the predicted 

stiffness of each of the current high and low aspect ratio samples. The predicted stiffness of 

each of the samples tested previously is also listed. It is immediately evident from the data 

that the predicted stiffness of each of the current samples is in close correspondence with its 

experimentally determined counterpart. The slight disparity in the predicted stiffness of the 

smallest of the present and previous samples arises from the minor difference in the measured 

modulus of the brand of acrylic used here and that used earlier. Some differences between 

measured and predicted stiffness of the current samples are also apparent with the predictions 

tending to be slightly higher than the measured values particularly for the larger of the low 

aspect ratio, R/t=4, samples. Interestingly, when the previous predictions and test data are 

similarly compared marginal differences are seen in these cases as well. The predicted 

stiffness of each of the current high and low aspect ratio samples are also shown in Figures 5 

and 6 respectively. While the listed data indicate slight differences between prediction and 

measurement for individual samples these two figures clearly intimate that the predicted and 

measured extent of the overall size effect will be very similar. This similarity inspires 

confidence in both the accuracy of the FE models and the precision of the experimental 

technique in which potential error sources have apparently been negated. 

 

 

 



6.0 Discussion 

 

6.1 Flexural modulus and characteristic length of perforated acrylic material derived from 

slender, high aspect ratio, R/t=8, ring sample stiffness data 

 

The flexural modulus and characteristic length of the perforated acrylic material were derived 

by using equation (8) after applying a linear fit to both the experimentally determined and 

predicted size effect shown in Figure 5. To maintain clarity only the fit to the measured data 

has been overlaid on this figure. Table 3 lists the flexural modulus values obtained from both 

the measured and forecast data together with the corresponding values of the characteristic 

length, lc, specified according to equation (8) and its more conventional definition, lb, given 

by equation (6). The consistency of the constitutive data derived from the measured and 

predicted size effect is significant, fitting equation (8) to the results given in table 3 is 

ostensibly reducing the influence of possible error associated with the measured stiffness of 

individual samples and consequently these derived data are strikingly similar. In addition, the 

values of the characteristic length, lb, listed in table 3 are in broad agreement with the 

theoretical prediction of the Bigoni and Drugan (2007) analysis. Using the value of Poisson’s 

ratio for the acrylic polymer together with the void size for the samples the value of the 

characteristic length predicted by this analysis is 0.71 mm. The analysis assumes both plane 

strain and more particularly constrained micropolar or couple stress behaviour so while these 

assumptions, particularly the latter, are not rigorously fulfilled in the samples the level of 

agreement does reinforce the credibility of the data listed in table 3. 

 

Table 3 also lists the flexural modulus and characteristic length data obtained for the material 

with the triangular arrangement of perforations investigated previously. When this previous 

data is compared to the present data two observations are evident: the flexural modulus of the 

material currently under investigation is higher than that of the material considered 

previously, though only marginally, while the characteristic length data shows almost no 

difference between the two materials. While the distribution of voids in the materials differs 

the void volume fraction within remains essentially the same. The observations thus imply 

that altering the matrix topology for a fixed volume fraction has only had a slight influence 

on the flexural modulus and almost no bearing whatsoever on the characteristic length. As 

already noted lattice models indicate that the characteristic length is expected to depend on 

the connectivity of the elements forming the lattice. Thus while such models may predict the 

behaviour of periodically heterogeneous materials comprised of slender, uniform connectors 

it appears that these predictions cannot be extended to the behaviour of the materials 

considered here where the matrix cannot be represented in this manner.  

 

6.2 Influence of coupling number on slender ring sample stiffness 

 

The size effect predicted by FE analysis of the slender samples is once again shown in Figure 

7. Three further predicted variations in sample stiffness have also been superimposed on this 

figure. These predictions were obtained using a higher order control volume based finite 

element method (CVFEM) that incorporates planar micropolar elastic constitutive behaviour. 

The method, developed by Beveridge et al. (2013b), is an enhanced variant of that developed 

by Wheel (2008), the enhancement being achieved by including quadratic rather than linear 

displacement fields within individual triangular elements. These were thus termed micropolar 

linear strain triangle (MPLST) elements. The enhanced method is particularly suited to the 

analysis of bending problems because of its higher order character. Furthermore, since the 

method incorporates micropolar behaviour the geometric details of the void array constituting 



the microstructure within the acrylic material do not need to be explicitly included and 

therefore the internal region of each sample can be represented straightforwardly by a 

continuous mesh of elements. In obtaining the three additional predictions of the size effect 

both the modulus and characteristic length of the perforated acrylic material were set within 

the CVFEM procedure to those values derived from the size effect forecast by detailed FE 

analysis as listed in table 3. The coupling number was however varied, initially it was set to 

0.99 then 0.15 and finally 0.0. 

 

The vertical scale in figure 7 has been deliberately enlarged so that any differences between 

the various predictions of the size effect are visually accentuated. It is immediately evident 

from the figure that when the coupling number is set to 0.0 the stiffness predicted by the 

CVFEM is independent of the sample size and no size effect is observed thereby implying 

that the material is behaving in a classically elastic manner as anticipated. When N = 0.99 the 

size effect is similar to that obtained by fully detailed FE analysis although the predicted 

stiffness of each sample is marginally higher. However, when the coupling number is reduced 

radically towards the lower end of the permissible range and set to 0.15 a significant size 

effect is still witnessed with the stiffness of each sample being only slightly lower than the 

detailed FE analysis predicts. While the greatest difference is exhibited by the smallest 

sample the reduction in stiffness is still less than 5% in this case. Figure 8 illustrates the size 

effects associated with the same three values of the coupling number when representing more 

slender samples with an enhanced aspect ratio, R/t, of 16:1. The stiffness of each sample 

predicted by ANSYS where the geometric detail of the voids was explicitly accounted for are 

also shown on figure 8 as are the predictions of equation 8 obtained using the constitutive 

properties derived from the size effect exhibited by the 8:1 aspect ratio samples. Evidently 

the difference in the size effect seen when N = 0.99 and that seen in the case where N = 0.15 

is even more marginal at the higher aspect ratio of 16:1. Furthermore figure 8 shows that the 

size effect remains practically unaltered even when N is reduced to 0.0625. Evidently in this 

case classical behaviour is only approached as the coupling number becomes vanishingly 

small. Thus it appears that using the approximate analytical solution, equation 8, to derive the 

flexural modulus and characteristic length from the stiffness of slender rings of varying size 

is appropriate since the size effect is almost independent of coupling number over the 

majority of its permissible range. Ideally the samples should be as slender as possible but in 

reality the use of samples with too high an aspect ratio may be impractical because of the 

increased likelihood of out of plane deflections, particularly in larger samples, that may 

potentially influence and even obscure any size effect. The agreement between the 

experimentally measured stiffness data and that predicted by detailed FE analysis 

demonstrates that the choice of a sample aspect ratio, R/t, of 8:1 actually provides a suitable 

compromise between the ideal of testing particularly slender samples and the practical 

difficulties that may be encountered when actually loading them. 

 

6.3 Coupling number of perforated acrylic material obtained from low aspect ratio, R/t=4, 

ring sample stiffness data 

 

Figure 9 shows the variation in stiffness with size predicted by the CVFEM procedure for the 

low aspect ratio, R/t=4, samples using the same three values of the coupling number used 

when considering the slender rings. Once again in the classical case with N = 0.0 no size 

effect is predicted while for approximate couple stress behaviour when N = 0.99 a marked 

size effect is forecast. However, when N is set to 0.15 the variation in stiffness is now 

predicted to lie somewhere between these bounding cases. Reducing the coupling number in 

this manner seems to have a more significant effect on the anticipated variation in stiffness of 



the low aspect ratio, R/t=4, samples than their more slender counterparts for which the 

coupling number appeared to have little influence on the size effect. This prediction is 

entirely reasonable given that in the slender sample shear deformation is practically 

inconsequential while in the low aspect ratio, R/t=4, rings it will in all likelihood have a more 

major influence. Ascertaining the stiffness variation of the low aspect ratio, R/t=4, rings and 

comparing this to predictions thus forms the basis of a realizable means of identifying the 

coupling number that best describes the behaviour of the perforated acrylic material. 

 

To identify the coupling number in this manner the CVFEM procedure was used to predict 

the stiffness of each of the low aspect ratio, R/t=4, rings across the allowable range of N. 

These predictions were then compared to the experimentally measured stiffness of each 

sample as well as the stiffness value ascertained from the detailed FE analysis of each ring. 

This comparison was made using the procedure adopted previously by Waseem et al. (2013) 

that was based on determining the normalised root mean square (RMS) difference or error 

between the predicted and actual stiffness values for the whole set of low aspect ratio, R/t=4, 

ring samples. Figure 10 illustrates how this RMS error measure varies with coupling number 

when the CVFEM predictions of stiffness are compared to both the experimental and FE 

results. Each data point on this figure in effect gives a normalized measure of the overall 

error in the predicted stiffness for the full set of samples. Also shown on this figure are the 

variations in RMS error in predicted stiffness obtained previously by Waseem et al. (2013) 

for the samples in which the voids were arranged in a triangular array rather than the 

quadrilateral arrangement featured in the current samples. Two points are immediately 

evident from the error variations depicted in Figure 10. Firstly, for both the current samples 

and those considered previously the error between the CVFEM predictions and the FEA 

results is noticeably less than the error between the predictions and the experimental results. 

In the former case constitutive properties derived from the FE results were used in generating 

the predictions while in the latter case properties derived from the experimental results were 

used. This difference in the error variations is likely to result from the inherent imprecision in 

the experimental results which the FE results are obviously not subject to. The second point 

evident from the figure is that all the error variations exhibit a minimum value which is 

located somewhere between N = 0.1 and N = 0.2. For both the present samples and those 

considered previously this minimum is more distinct for the error measure based on the 

difference between the CVFEM predictions and the FE results. Some slight discrepancy 

exists in the location of the minima identified previously for the samples with the triangular 

void arrangement; when predictions were compared to experimental results the minimum was 

located at N = 0.125 while comparison with the FE results located the minimum at N = 0.175. 

However, for the present samples there is no such discrepancy, both bases of comparison 

locate the minimum in the error variation at N = 0.175. In Figure 11 the stiffness predictions 

provided by the CVFEM procedure when N = 0.175 are superimposed on the detailed FE 

results obtained for each of the present low aspect ratio, R/t=4, samples. The correspondence 

between the CVFEM predictions and the FE results is clearly excellent for all four of the 

samples. 

 

While samples with an even lower aspect ratio of 2:1 were not manufactured and tested nor 

considered previously finite element representations of them that explicitly incorporated the 

geometric details of the voids were generated using ANSYS on this occasion. The stiffness of 

these samples was also predicted for the allowable range of coupling numbers using the 

CVFEM procedure. Again, the RMS error between the CVFEM predictions and the detailed 

FE results were determined at each value of coupling number considered. Figure 12 

illustrates the variation in this error with coupling number. A minimum error is once again 



seen at around N = 0.175. Furthermore, the minimum in the error is now more obvious than 

when the aspect ratio was 4:1. The fact that that a unique value of this parameter has been 

obtained at two different aspect ratios suggests that a genuine, geometry independent, 

constitutive property has indeed been ascertained. 

 

The coupling number value of 0.175 identified for the present samples with their quadrilateral 

void arrangement is very similar to the value obtained previously by Waseem et al. (2013) for 

the corresponding samples with a triangular array of voids. Hence the coupling number, like 

the characteristic length, appears to be insensitive to any change in matrix topology. 

However, lattice models indicate that alterations to topology will be accompanied by a 

corresponding change in this constitutive parameter in addition to the characteristic length. 

Thus the coupling number forecasts of lattice models while appropriate to those 

heterogeneous materials where the matrix is comprised of simple beam like connectors are 

not applicable in forecasting the behaviour of those heterogeneous materials with more 

elaborate matrix geometry. 

 

7.0 Conclusions 

 

Ring samples of a heterogeneous material consisting of circular voids within an acrylic 

polymer matrix were manufactured and loaded to determine the effect of sample size on 

stiffness. In all samples the void centres were located on a quadrilateral array. An FE analysis 

incorporating full geometric details of the heterogeneity was also performed for each sample. 

The intensity of the size effect determined for the samples from both load testing and FE 

analysis is remarkably similar to that found previously for comparable samples albeit with the 

void centres located on a triangular array. For the slender rings the size effect was interpreted 

within the context of planar micropolar or Cosserat elasticity theory and the value of the 

characteristic length constitutive parameter identified. Again, this turned out to be very 

similar to the value ascertained for the samples considered previously. Furthermore, 

additional numerical predictions imply that for slender rings the size effect is relatively 

insensitive to the influence to a second constitutive parameter, the coupling number, except 

when this parameter is very small. This vindicates the use of the closed form analytical 

solution for the stiffness of a slender ring for identifying the characteristic length parameter 

from the observed size effect. 

 

The size effect established for a second, less slender set of ring samples enabled the 

parameter describing the degree of asymmetry in the shear stresses, the coupling number, to 

be identified. The value of this parameter was also found to be comparable to that determined 

previously implying that changing the topology of the material matrix has little influence on 

the coupling number. This result apparently contradicts the predictions obtained by static 

analysis of lattice models of heterogeneous materials which imply that a change in lattice 

connectivity should result in a more evident change in this parameter. Nevertheless, it does 

appear to concur with behaviour forecast in the dynamic case in which the sensitivity to 

topology reduces at longer wavelengths. The static loading mode employed here is arguably 

equivalent to the long wavelength dynamic case since the deformation field varies slowly 

relative to the material microstructure in both cases and hence the forecast insensitivity is 

being observed in practice. 
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Short Title 

 

Micropolar Media of Differing Topology 

  



 

 

Topology 

 

 

Characteristic Length, lc
2 

 

 

Coupling Number, N2 

 

 

Square 

 

 

L2/24 

 

 

1/2 

 

 

Hexagonal 

 

 

L2(1+d2/L2)/48 

 

 

(1+d2/L2)/(3+d2/L2) 

 

 

Table 1 Predicted characteristic lengths and coupling numbers for 2D lattices comprised of 

connectors of length L and depth d. 

  



 

  Present Quadrilateral 

Arrangement of Voids 

Previous Triangular 

Arrangement of Voids 

[Waseem et al. (2013)] 

Ring Aspect 

Ratio (R/t) 

Ring Mean 

Radius, R, 

(mm) 

Measured 

Stiffness 

(Nmm-1) 

FEA 

Predicted 

Stiffness 

(Nmm-1) 

Measured 

Stiffness 

(Nmm-1) 

FEA 

Predicted 

Stiffness 

(Nmm-1) 

8 

8 

8 

8 

25.4 

50.8 

76.2 

127.0 

16.588 

13.607 

12.629 

12.427 

17.388 

13.353 

12.697 

12.450 

16.248 

13.719 

12.399 

11.664 

17.160 

13.209 

12.477 

12.099 

4 

4 

4 

4 

12.7 

25.4 

38.1 

63.5 

113.600 

94.916 

86.813 

80.990 

115.843 

95.091 

90.899 

89.244 

107.880 

90.600 

82.634 

82.619 

114.079 

92.924 

89.007 

87.002 

 

 

Table 2 Measured and predicted stiffness of perforated ring samples with quadrilateral and 

triangular arrangement of voids. 

 

  



 

 Present Quadrilateral Arrangement 

of Voids 

Previous Triangular Arrangement 

of Voids 

[Waseem et al. (2013)] 

 Derived from 

Measured 

Stiffness 

Variation 

Derived from 

FEA Predicted 

Stiffness 

Variation 

Derived from 

Measured 

Stiffness 

Variation 

Derived from 

FEA Predicted 

Stiffness 

Variation 

Flexural 

Modulus, EFM 

(Nmm-2) 

1873.1 1850.0 1821.3 1811.4 

Characteristic 

Length, lc (mm) 

1.88 2.08 1.93 2.11 

Characteristic 

Length, lb (mm) 

0.54 0.60 0.56 0.61 

 

Table 3 Flexural modulus and characteristic length values derived from measured and 

predicted stiffness data of slender perforated ring samples with quadrilateral and triangular 

void arrangements. 

 

  



 

 
 

Figure 1 Sections of present (right) and previously tested (left) acrylic polymer ring samples 

and their analogy to quadrilateral and hexagonal lattice structures. 

 

  

 

 
 

 

 

 

  
  

  

  



 

 
 

Figure 2 Mechanical loading of typical ring sample. Sample is illuminated by video 

extensometer which is not shown. 

 

  



 

 
 

Figure 3 Geometric representation of quarter sample geometry used in generating finite 

element mesh with constraints also shown. 
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Figure 4 Finite element mesh used to represent an individual subregion of the acrylic polymer 

matrix adjacent to a given void within a sample. 

 

  



 

 
 

Figure 5 Measured and predicted variations in ring stiffness with sample size, 1/t2, for high 

aspect ratio, R/t = 8.0, rings with 1.588 mm diameter voids arranged on a quadrilateral array. 
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Figure 6 Measured and predicted variations in ring stiffness with sample size, 1/t2, for low 

aspect ratio, R/t = 4.0, rings with 1.588 mm diameter voids arranged on a quadrilateral array. 
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Figure 7 Comparison of predicted variation in high aspect ratio, R/t = 8.0, ring stiffness with 

sample size, 1/t2, for coupling numbers, N, values of 0.99, 0.15 and 0.0 against detailed FEA 

results. 
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Figure 8 Predicted variation in more slender, R/t = 16.0, ring stiffness with sample size, 1/t2, 

for coupling numbers, N, values of 0.99, 0.15 and 0.0. 
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Figure 9 Predicted variation in low aspect ratio, R/t = 4.0, ring stiffness with sample size, 1/t2, 

for coupling numbers, N, values of 0.99, 0.15 and 0.0. 
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Figure 10 RMS error in predicted stiffness of all low aspect ratio, R/t = 4.0, samples with 

either quadrilateral or triangular void arrangements as a function of coupling number. 

 

  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
e

d
 R

M
S 

Er
ro

r

Coupling Number

CVFEM - Experiment, quadrilateral void array

CVFEM - FEA, quadrilateral void array

CVFEM - Experiment, triangular void array [Waseem et al. (2013)]

CVFEM - FEA, triangular void array [Waseem et al. (2013)]



 

 
 

Figure 11 Comparison of predicted variation in low aspect ratio, R/t = 4.0, ring stiffness with 

sample size, 1/t2, for coupling numbers, N, values of 0.99, 0.175 and 0.0 against detailed FEA 

results. 
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Figure 12 RMS error in predicted stiffness of aspect ratio, R/t = 2.0, samples with 

quadrilateral void arrangement as a function of coupling number. 
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