Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Mapping hail meteorological observations for prediction of erosion in wind turbines

MacDonald, Hamish and Infield, David and Nash, David H. and Stack, Margaret M. (2016) Mapping hail meteorological observations for prediction of erosion in wind turbines. Wind Energy, 19 (4). pp. 777-784. ISSN 1095-4244

[img]
Preview
Text (Macdonald-etal-WE2015-mapping-hail-meteorological-observations-for-prediction-of-erosion-in-wind-turbines)
we1854.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

Wind turbines are subject to a wide range of environmental conditions during a lifespan that can conceivably extend beyond 20 years. Hailstone impact is thought to be a key factor in the leading edge erosion and damage of wind turbine blades. Along with the size and density of the hailstone, the aggregated impact velocity components are crucial variables that characterise the kinetic energy associated with singular impact. These components include: the terminal velocity of the hailstone, the mean wind speed and the rotational speed of the turbine. Theorised values for the impact velocity may not truly reflect the conditions experienced by wind turbine blades. Using UK meteorological data, a greater representation of hail characteristics, occurrence probabilities and realistic impact component velocities is proposed, which will assist in the development of a realistic damage model for hailstone impact.