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The influence of localized water currents on the nonlinear dynamics and stability of large ampli-
tude, statistically distributed gravity waves is investigated theoretically and numerically by means
of an evolution equation for a Wigner function governing the spectrum of waves. It is shown that
water waves propagating in the opposite direction of a localized current channel can be trapped in
the channel, which can lead to the amplification of the wave intensity. Under certain conditions
the wave intensity can be further localized due to a self-focusing (Benjamin-Feir) instability. The
localized amplification of the wave intensity may increase the probability of extreme events in the
form of freak waves, which have been observed in connection with ocean currents.

PACS numbers: 92.10.Hm, 47.35.Bb, 47.35.-i

I. INTRODUCTION

Water currents are often associated with the occurrence of rogue waves on the ocean. For example, several obser-
vations of rogue waves have been made off the coasts South Africa, Japan, and other places associated with strong
water currents [1]. Localized water currents also naturally occur at the mouths of big rivers flowing into the oceans
or lakes. Field observations of the trapping of water waves in opposing currents have been made in the Gulf stream
[2]. Water waves encountering a counter-propagating current will slow down and their wave energy pile up, enhancing
their amplitudes and increasing the statistical risk of extreme events. Opposing currents can lead the steepening and
breaking of waves [3], as well as to instabilities and localization of waves [4]. Variable currents can also focus waves
into caustic regions [5, 6] and capture waves into localized, opposing currents [7–10], where large amplitude waves
are produced. There is sometimes a distinction made between extreme waves meaning large in absolute terms, and
freak waves meaning unusual waves [5, 9]. Naturally occurring waves on the ocean contain a mixture of different
frequencies and propagation directions. Statistical descriptions of water waves have been derived in the past using
dimensional arguments and by parametrization of experimental data [11, 12]. The most widely used kinetic models
that govern collective interactions of between a spectrum of water waves are Hasselmann’s [14] and Zakharov’s [15]
models for random waves. The modeling of the trapping and intensification of waver waves in currents in the frame-
work of Hasslelmann’s equation [2, 8, 13]. Alber’s model [16, 17] uses ideas from quantum statistics [18] to derive a
transport model for narrow-banded wave trains. Similar approaches of quantum-like transport equations are used for
nonlinear optics [19], plasmas [20], quantum mechanics [21], etc., and are therefore of general interest to nonlinear
wave systems. A finite width of the wave spectrum tend to decreases the instability due to phase mixing of the waves,
an effect analogous to Landau damping of waves in plasmas [16]. The purpose of this Letter is to develop an evolution
equation for the Wigner function governing the spectrum of water waves. The model includes the effect of a localized
current, in addition to the effects of wave dispersion and nonlinearity, for a distribution of water waves. Using realistic
parameters from observations of ocean waves and laboratory experiments, the effects of water currents with different
velocities on the wave spectrum are studied numerically.

II. MATHEMATICAL FORMULATION

As a starting point, we consider a quasi-monochromatic water wave propagating in the x-direction with the carrier
wavenumber k0 and frequency ω0 =

√
gk0, where g ≈ 9.81 m/s2 is the gravitational constant (and k0 > 0). To model

waves with wave vectors and frequencies not to far from the carrier wave, taking into account first-order dispersive
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and nonlinear effects, as well as the influence of a background water flow, we assume that the surface elevation is given
by η(x, y, t) = (1/2)A(x, y, t) exp(−iω0t + ik0x)+complex conjugate, where A is the complex-valued, slowly varying
envelope of the wave. To take into account the effects of a water current localized in the y-direction and flowing in
the x-direction (cf. Fig. 1), we use as a starting point the nonlinear Schrödinger equation

i

(
∂A

∂t
+ v0(y)∂A

∂x

)
− k0vc(y)A + Dx

∂2A

∂x2 + Dy
∂2A

∂y2 − ξ|A|2A = 0, (1)

where Dx = −ω0/(8k2
0) and Dy = ω0/(4k2

0) are the group dispersion coefficients, v0(y) = vgr + vc(y) is the sum of the
group velocity vgr = ∂ω/∂k0 = ω0/(2k0) and water current velocity vc(y), and ξ = ω0k2

0/2 is the nonlinear coupling
constant. The term v0(y)∂A/∂x takes into account the modification of the effective group velocity due to the water
current, and the term −k0vc(y)A governs the frequency Doppler shift due to the current. Higher order expansions in
terms of nonlinearity and wave dispersion have been used to derive more general Schrödinger-like models for water
waves including currents [22]. In the formalism of Ref. [22], the current velocity is of order ϵ2, while the time- and
space derivatives and Ak0 are of order ϵ, where ϵ is a nonlinearity parameter. Since the dispersion and nonlinearity
coefficients Dx and −ξ have equal signs, equation (1) is modulationally unstable due to the Benjamin-Feir instability
(BFI) for modulation wavenumbers in the forward x-direction but is stable in the perpendicular y-direction since Dy

and −ξ have opposite signs. The idea of trapping of water waves in a localized flow current [10] can be emphasized
by the reduced problem where A depends only on y and t (but not on x),

i
∂A

∂t
+ Dy

∂2A

∂y2 − V (y)A− ξ|A|2A = 0, (2)

where V (y) = k0vc(y) works as an effective potential. This is formally equivalent to the one-dimensional Gross-
Pitaevskii equation (e.g. Ref. [23]), used to model Bose-Einstein condensates with a repulsive coupling coefficient
(since ξ > 0). Under suitable conditions, where the localized water current is opposite to the direction of the waves
[i.e. when vc(y) is negative], water waves can be trapped in the potential well V (y). A linearized version of Eq. (2) leads
to a Sturm-Liouville type boundary-value problem supporting both a discrete spectrum corresponding to the trapped
waves and a continuous spectrum corresponding to free waves. Hence, in generic situations there is a combination of
trapped and free waves [10]. The nonlinearity is de-focusing in the y-direction and decreases the share of the trapped
component. On the other hand, the trapping and accumulation of waves can enhance the growth rate of the BFI in
the channel when the x-dependence is taken into account.
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FIG. 1: A localized water current with velocity vc(y) opposite to the wave direction, leading to the bending of the wavefronts
and an accumulation of water waves in the channel.

Instead of the highly idealized model using monochromatic water waves, it is interesting to investigate the dynamics
of a spectrum of waves which is more realistic for real gravity waves. To derive a evolution equation for the wave
spectrum, we define the Wigner function

f = f(r, v, t) = 1
2(2π)2

∫
A∗(+)A(−)eiλ·(v−v0(y)x̂)d2λ , (3)
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where we used the notation A(±) = A(R±, t) and A∗(±) = A∗(R±, t), with R± = (x±, y±) = (x±Dxλx, y ±Dyλy).
The velocity variable v = vxx̂ + vyŷ can be interpreted as the group velocity with which the energy of each wave is
transported, and λ = λxx̂+λyŷ is the Fourier transformed velocity variable, where x̂ and ŷ are the unit vectors along
the x- and y-directions. The wave intensity (the variance of the surface elevation) is defines as I =

∫
f(r, v, t)d2v. If

the wave spectrum is entirely defined by a deterministic wave train A, we have from Eq. (3) that I = |A|2/2. Following
Alber [16], however, we use ideas from statistical mechanics to describe the dynamics of an ensemble of waves and
to abandon the deterministic view. The Wigner function (3) is then used to generate an evolution equation, which
contains the velocity v as a variable in addition to space and time [24]. Taking the time derivative of both sides of
Eq. (3) and eliminating the time-derivatives of A and A∗ with the help of Eq. (1), we derive the evolution equation
for the Wigner function

∂f

∂t
+ v · ∇f = 1

(2π)2

∫ {
2iξ[I(+)− I(−)] + i[vc(y+)− vc(y−)]

[
k0 −

(v0(y)− vx)
2Dx

]
− [vc(y+)− 2vc(y) + vc(y−)]

2
∂

∂x

}
eiλ·(v−v′)f(r, v′, t)d2v′d2λ− vy

∂vc(y)
∂y

∂f

∂vx
.

(4)

where the wave intensity is I =
∫

f(r, v, t)d2v. A detailed derivation of Eq. (4) is given in Appendix A. For zero
current, vc = 0, Eq. (4) can be shown to be equivalent to Eq. (3.14) of Ref. [16] in the deep water limit. After
integrating Eq. (4) in velocity space, we find the continuity equation

∂I

∂t
+∇ ·

∫
vf(r, v, t)d2v = 0 , (5)

which shows that the total wave energy E =
∫

I d2r is conserved.
A model spectrum in frequency domain, based on the Pierson-Moskowitz spectrum [11], was parameterized by the

Joint North Sea Wave Project (JONSWAP) [12] as

S(ω) = αP g2

ω5 exp

(
−5

4
ω4

p

ω4

)
γ

exp
[
− (ω−ωp)2

2σ2ω2
p

]
, (6)

where ωp is the peak frequency, γ is the peak enhancement parameter and αP is the Phillips parameter. Since the wave
spectrum is peaked at ω = ωp, we will use ω0 = ωp and k0 = kp ≡ ω2

p/g in the evaluation of the dispersion coefficients
Dx and Dy. The integral of the spectrum S(ω) in Eq. (6) over all frequencies yields the wave intensity. To use the
directional JONSWAP spectrum to construct initial conditions in our simulations, we will use f = f0(v) = F0(v)G(θ)
where we have introduced polar coordinates vx = v cos(θ) and vy = v sin(θ) in velocity space. We obtain F0 from the
frequency spectrum (6) by using the differential variance dI = S(ω)dω = F0(v) vdv, as

F0(v) = S[ω(v)] 1
v

∣∣∣∣dω

dv

∣∣∣∣ = S[ω(v)] g

2v3 , (7)

where we used that the group speed v of the wave packets is related to the wave frequency ω =
√

gk via v = dω/dk =
ω/2k = g/2ω, or ω(v) = g/2v. The directional spreading function is chosen [25, 26] as G(θ) = G0 cos2s(θ/2) =
G0[1 + cos(θ)]s/2s, where cos(θ) = vx/v, v = (v2

x + v2
y)1/2, and G0 = 22s−1Γ2(s + 1)/[πΓ(2s + 1)] is a normalization

constant [26] such that
∫ π

−π
G(θ) dθ = 1, where Γ is the Gamma function, and s is a directional spread parameter.

We note that G has a maximum at θ = 0 and tends to a narrower distribution with an increase of s. For ocean waves
[12], the parameter γ is in the range 1–6 and αP in the range 0.01–0.05; the values γ = 1 and αP = 0.0081 gives
Pierson-Moskowitz spectrum [11] of fully developed wind seas. Typical values on the directional spread parameter s
is of the order 5–20 for typical ocean waves [26, 27], but larger values (corresponding to more uni-directional waves)
can be obtained in controlled experiments [28].

For numerical convenience and for comparison with Alber’s model [16], we Fourier transform Eq. (4) in velocity
space. Using the Fourier transform pair

f̂(r,λ, t) = 2
∫

f(r, v, t)eiλ·v d2v, (8a)

f(r, v, t) = 1
2(2π)2

∫
f̂(r,λ, t)e−iλ·v d2λ, (8b)
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FIG. 2: The wave intensity for different amplitudes and signs of the water current flowing in the x-direction, given by vc(y) =
vc0 exp(−y2/L2). a) The initial (t = 0) intensity I ≈ 0.01k−2

0 for αP = 0.05, with small (of the order 2 × 10−5k−2
0 ) random

fluctuations added to seed the BFI. b)–f) The intensities at t = 3800 T0 for b) vc0 = −0.08 vph, αP = 0.05, L = 20k−1
0 , c)

vc0 = −0.04 vph, αP = 0.05, L = 20k−1
0 , d) vc0 = +0.08 vph, αP = 0.05, L = 20k−1

0 , e) vc0 = −0.08 vph, αP = 0.05, L = 10k−1
0 ,

and f) vc0 = −0.08 vph, αP = 0.025, L = 20k−1
0 , where vph = ω0/k0 is the phase velocity of the leading wave. The wave energy

is localized by opposing currents (negative vc0) and dispersed by following currents (positive vc0). Wave localizations due to
the BFI are seen for the opposing currents in panels b, c) and e).

in Eq. (4) leads to

∂f̂

∂t
− i∇λ · ∇f̂ = −

{
2iξ[I(+)− I(−)] + i[vc(y+)− vc(y−)]

[
k0 −

1
2Dx

(
v0(y) + i

∂

∂λx

)]
+ [vc(y+)− 2vc(y) + vc(y−)]

2
∂

∂x

}
f̂ + λx

∂vc(y)
∂y

∂f̂

∂λy
.

(9)

where I = f̂(r, 0, t)/2. Compared to Eq. (3.7) of Ref. [16], Eq. (9) also includes the effects of the water current vc.

III. NUMERICAL RESULTS AND DISCUSSION

To solve Eq. (9) numerically, we employ the methods in Ref. [29], originally developed to solve the Vlasov equation
for plasmas. Using a pseudo-spectral method in space, the spatial shifts are transformed to multiplications in wave-
number space, which are readily evaluated numerically (cf. Ref. [24]). As initial conditions we use the JONSWAP
spectrum with homogeneously distributed water waves. Equation (8a) is evaluated numerically to obtain the initial
distribution function in the Fourier transformed velocity space. The used parameters γ = 6, σ = 0.08, and s = 20 are
consistent with JONSWAP measurements [12] and recent water basin experiments [28]. For αP = 0.05, the initial
wave intensity is I ≈ 0.01k−2

0 (cf. Fig. 2a). Small random fluctuations of the order 2 × 10−5k−2
0 are added to the

initial intensity to give a seed to the BFI. The velocity profile of the water current, flowing in the x-direction, is given
by vc(y) = vc0 exp(−y2/L2), where L is the width of the current channel. For numerical convenience, the simulations
are carried out in a window centered around the spectral peak of initial distribution f0(v), by transforming to a
frame moving in the x-direction with the group velocity vgr = vph/2, where vph = ω0/k0 is the phase speed of the
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FIG. 3: The maximum wave intensity as a function of time. The labels b)–f) refer to the different cases in Fig. 2.

leading wave, i.e. vx → vx + vgr in the initial condition and in Eq. (4), ∂/∂t → ∂/∂t − vgr∂/∂x in Eq. (4), and
∂/∂λx → ∂/∂λx + ivgr and ∂/∂t→ ∂/∂t− vgr∂/∂x in Eq. (9). The spatial domain of size Lx×Ly = 100× 200 k−1

0 is
resolved by 64× 64 grid points, with periodic boundary conditions. The velocity space of size 1.0× 1.0 vph is resolved
using 80× 80 intervals. (The corresponding domain in Fourier transformed velocity space is 80π × 80π v−1

ph [29].)
Figures 2b–2f show the intensity distributions at the end of the simulations at t = 3800 T0 for different values of

vc0, αP and L, where T0 = 2π/ω0 is the wave period of the leading wave. It is seen in Fig. 2 that opposing currents
(vc0 < 0) attract surrounding waves and the intensity is increased at the center of the channel. Since the total wave
energy is conserved [cf. Eq. (5)], an increase of the intensity in the channel leads to a slight decrease of the intensity at
the transverse periphery, and vice versa. For the opposing current vc0 = −0.08 vph in a channel of width L = 20 k−1

0
(Fig. 2b), the wave energy is further amplified due to the BFI. The instability saturates nonlinearly by the formation
of long-lived, localized wave packets in the center of the channel. For smaller values of the opposing current (Fig. 2c)
the intensity (and the resulting instability) in the channel is decreased, and for a following current (vc0 > 0 in Fig. 2d)
the waves are instead repelled, resulting in a minimum of the intensity at the center of the channel. A decrease of
the width of the channel (Fig. 2e) only slightly decreases the intensity in the channel. Finally, decreasing the initial
intensity by half using αP = 0.025 (cf. Fig. 2f) leads to a stabilization of the system. The over-all maximum of the
intensity as a function of time is shown in Fig. 3. The intensity has some initial transient oscillations when the waves
are redistributed from the homogeneous initial condition to be either trapped in or repelled by the channel. Due to
the trapping of waves, the intensity is higher for higher opposing currents, and a further increase of the maximum
intensity occurs due to the BFI for cases b) c) and e) with opposing currents. We emphasize that the numerical
results here apply to both ocean waves and experiment using water tanks or basins. For example, for ocean waves
having the frequency 0.1 Hz and corresponding angular frequency ω = 0.628 s−1, wave number k0 = 0.040 m−1,
and phase speed vph = 16 m/s, the flow speed used in Fig. 2b is vc0 = −0.08 vph ≈ −1.28 m/s at the center of the
channel. A width of the current channel of L = 20 k−1

0 corresponds to 500 m for this case, to be compared with
the wavelength 2π/k0 ≈ 160 m for the leading wave. On the other hand, for experiments [28] using waves with a
frequency 1 Hz, corresponding to ω = 6.28 s−1, k0 = 4.0 m−1, and vph = 1.6 m/s, we instead have a flow speed of
vc0 = −0.08 vph ≈ −12.8 cm/s at the center of the channel with a width of L = 20 k−1

0 = 5 m.
In summary, localized opposing water currents traps water waves which via the BFI can lead to the formation of

long-lived, large amplitude wave packets propagating along the channel. This may enhance the statistical probability
of extreme events in the form of giant waves.
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APPENDIX A: DERIVATION OF THE EVOLUTION EQUATION FOR THE WIGNER FUNCTION

As a starting point to derive Eq. (4), we consider the nonlinear Schrödinger equation

i

(
∂A

∂t
+ v0(y)∂A

∂x

)
− k0vc(y)A + Dx

∂2A

∂x2 + Dy
∂2A

∂y2 − ξ|A|2A = 0, (A1)

where

Dx = − ω0

8k2
0

, Dy = ω0

4k2
0

(A2)

are the group dispersion coefficients, v0(y) = vgr +vc(y) is the sum of the group velocity vgr = ∂ω/∂k0 = ω0/(2k0) and
the water current velocity vc(y), which introduces a y-dependent Doppler shift in the nonlinear Schrödinger equation,
and ξ = ω0k2

0/2 is the nonlinear coupling constant. We define the Wigner function

f = f(r, v, t) = 1
2(2π)2

∫
d2λeiλ·(v−v0(y)x̂)A∗(R+, t)A(R−, t) , (A3)

where R+ = (x+, y+) = (x + Dxλx, y + Dyλy), R− = (x−, y−) = (x − Dxλx, y − Dyλy), and the asterisk denotes
complex conjugation. Taking the time derivative of both sides of Eq. (A3) and replacing time derivatives of A and
A∗ on the right-hand side with the help of Eq. (A1) gives

∂f

∂t
= I1 + I2 + I3 + I4, (A4)

where

I1 = 1
2(2π)2

∫
d2λeiλ·(v−v0(y)x̂)

(
v0(y+)∂A∗(+)

∂x
A(−) + v0(y−)A∗(+)∂A(−)

∂x

)
, (A5)

I2 = ik0

2(2π)2

∫
d2λeiλ·(v−v0(y)x̂) (vc(y+)− vc(y−)) A∗(+)A(−)

= ik0

(2π)2

∫
d2λd2v′eiλ·(v−v′) (vc(y+)− vc(y−)) f(r, v′, t) , (A6)

I3 = i

2(2π)2

∫
d2λeiλ·(v−v0(y)x̂)

[
Dx

(
A∗(+)∂2A(−)

∂x2 − ∂2A∗(+)
∂x2 A(−)

)
+ Dy

(
A∗(+)∂2A(−)

∂y2 − ∂2A∗(+)
∂y2 A(−)

)]
= −(vx − v0(y))∂f

∂x
− vy

∂f

∂y
− vy

∂v0(y)
∂y

∂f

∂vx
, (A7)

I4 = iξ

2(2π)2

∫
d2λeiλ·(v−v0(y)x̂) (|A(+)|2 − |A(−)|2

)
A∗(+)A(−)

= 2iξ

(2π)2

∫
d2λd2v′eiλ·(v−v′) (I(+)− I(−)) f(r, v′, t) , (A8)

where the notation A(R±, t) = A(±), and A∗(R±, t) = A∗(±) is used.
In the derivation of Eq. (A6), the identity∫

d2ve−iλ·(v−v0(y)x̂)f(r, v, t) = 1
2

A∗(+)A(−) (A9)

was used.
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In the derivation of Eq. (A7), the identities

∂2

∂x∂λx
(A∗(+)A(−)) = Dx

(
∂2A∗(+)

∂x2 A(−)−A∗(+)∂2A(−)
∂x2

)
, (A10)

∂2

∂y∂λy
(A∗(+)A(−)) = Dy

(
∂2A∗(+)

∂y2 A(−)−A∗(+)∂2A(−)
∂y2

)
(A11)

were used, as well as integration by parts assuming decaying or periodic boundary conditions.
In the derivation of Eq. (A8), the quantity

I(r, t) =
∫

d2vf(r, v, t) = 1
2
|A(r, t)|2 (A12)

was introduced, and the identity (A9) was again used.
Hence, the main difficulty in evaluating the time-evolution equation for the Wigner distribution is in the integral

I1 in Eq. (A5). We will use the formal expression

v0(y±) = v0(y ±Dyλy) = v0(y) exp

(
±Dyλy

←
∂

∂y

)
, (A13)

which can be justified by Taylor expansions of v0 and the exponential. The left arrow ← indicates that ∂/∂y act to
the left. We have

I1 = − v0(y)
2(2π)2

∫ [
exp

(
Dyλy

←
∂

∂y

)
∂A∗

∂x
(+)A(−) + exp

(
−Dyλy

←
∂

∂y

)
A∗(+)∂A

∂x
(−)
]
eiλ·(v−v0(y)x̂)d2λ . (A14)

We now use a formal property of the Fourier transform λy → −i∂/∂vy to write∫
exp

(
Dyλy

←
∂

∂y

)
∂A∗

∂x
(+)A(−)eiλ·(v−v0(y)x̂)d2λ = exp

(
− iDy

←
∂

∂y

→
∂

∂vy

)∫
∂A∗

∂x
(+)A(−)eiλ·(v−v0(y)x̂)d2λ (A15)

and∫
exp

(
−Dyλy

←
∂

∂y

)
A∗(+)∂A

∂x
(−)eiλ·(v−v0(y)x̂)d2λ = exp

(
iDy

←
∂

∂y

→
∂

∂vy

)∫
A∗(+)∂A

∂x
(−)eiλ·(v−v0(y)x̂)d2λ . (A16)

Inserting Eqs. (A15) and (A16) into Eq. (A14), and writing the exponentials in front of the integral signs in terms
of trigonometric functions as exp(±iα) = cos(α)± i sin(α) where α = Dy(

←
∂ /∂y)(

→
∂ /∂vy), we obtain

I1 = − v0(y)
2(2π)2

{
cos
(

Dy

←
∂

∂y

→
∂

∂vy

)∫ [
∂A∗

∂x
(+)A(−) + A∗(+)∂A

∂x
(−)
]

eiλ·(v−v0(y)x̂)d2λ

−i sin
(

Dy

←
∂

∂y

→
∂

∂vy

)∫ [
∂A∗

∂x
(+)A(−)−A∗(+)∂A

∂x
(−)
]

eiλ·(v−v0(y)x̂)d2λ

}
.

(A17)

Finally, we use that
∂A∗

∂x
(+)A(−) + A∗(+)∂A

∂x
(−) = ∂

∂x
[A∗(+)A(−)] (A18)

and
∂A∗

∂x
(+)A(−)−A∗(+)∂A

∂x
(−) = 1

Dx

∂

∂λx
[A∗(+)A(−)] (A19)

and an integration by parts in Eq. (A17) to move the derivative with respect to λx from [A∗(+)A(−)] to eiλ·(v−v0(y)x̂).
The result is

I1 = − v0(y)
2(2π)2

{
cos
(

Dy

←
∂

∂y

→
∂

∂vy

)
∂

∂x

∫
A∗(+)A(−)eiλ·(v−v0(y)x̂)d2λ

− sin
(

Dy

←
∂

∂y

→
∂

∂vy

)
(vx − v0(y))

Dx

∫
A∗(+)A(−)eiλ·(v−v0(y)x̂)d2λ

}
,

(A20)
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or, using the definition (A3) of the Wigner function,

I1 = −v0(y) cos

[
Dy

←
∂

∂y

→
∂

∂vy

]
∂f

∂x
+ v0(y) sin

[
Dy

←
∂

∂y

→
∂

∂vy

]
(vx − v0(y))

Dx
f . (A21)

The expression for I1 can be shown in an integral form using the identities

v0(y) cos

[
Dy

←
∂

∂y

→
∂

∂vy

]
∂f

∂x
= 1

2(2π)2
∂

∂x

∫
d2λd2v′eiλ·(v−v′) (v0(y+) + v0(y−)) f(r, v′, t) (A22)

and

v0(y) sin

[
Dy

←
∂

∂y

→
∂

∂vy

]
(vx − v0(y))

Dx
f = i

2(2π)2
(vx − v0(y))

Dx
×

×
∫

d2λd2v′eiλ·(v−v′) (v0(y+)− v0(y−)) f(r, v′, t) (A23)

which can be proven after Taylor expanding and using the definition of the Wigner function. In this way we arrive at
the form

I1 = 1
2(2π)2

∫
d2λd2v′eiλ·(v−v′)

[
− (v0(y+) + v0(y−)) ∂

∂x
+ i(vx − v0(y))

Dx
(v0(y+)− v0(y−))

]
f(r, v′, t) . (A24)

To conclude, we use the results (A6), (A7), (A8) and (A24) and the definition of group velocity, vgr = v0(y)−vc(y) =
ω0/(2k0) to eliminate v0(y) in favor of vc(y) where convenient. In this manner, we arrive at Eq. (4).
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