Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Expert judgement combination using moment methods

Wisse, B.W. and Bedford, T.J. and Quigley, J.L. (2008) Expert judgement combination using moment methods. Reliability Engineering and System Safety, 93 (5). pp. 675-686. ISSN 0951-8320

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Moment methods have been employed in decision analysis, partly to avoid the computational burden that decision models involving continuous probability distributions can suffer from. In the Bayes linear (BL) methodology prior judgements about uncertain quantities are specified using expectation (rather than probability) as the fundamental notion. BL provides a strong foundation for moment methods, rooted in work of De Finetti and Goldstein. The main objective of this paper is to discuss in what way expert assessments of moments can be combined, in a non-Bayesian way, to construct a prior assessment. We show that the linear pool can be justified in an analogous but technically different way to linear pools for probability assessments, and that this linear pool has a very convenient property: a linear pool of experts' assessments of moments is coherent if each of the experts has given coherent assessments. To determine the weights of the linear pool we give a method of performance based weighting analogous to Cooke's classical model and explore its properties. Finally, we compare its performance with the classical model on data gathered in applications of the classical model.