Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Exciton localization and quantum efficiency - a comparative cathodoluminescence study of (In, Ga)N/GaN and GaN(Al,Ga)N quantum wells

Watson, I.M. and Jahn, U. and Dahr, S. and Brandt, O. and Grahn, H.T. and Ploog, K.H. (2003) Exciton localization and quantum efficiency - a comparative cathodoluminescence study of (In, Ga)N/GaN and GaN(Al,Ga)N quantum wells. Journal of Applied Physics, 93 (2). pp. 1048-1053. ISSN 0021-8979

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We study the quantum efficiency () and transition energy (Et) as a function of excitation density and temperature in (In,Ga)N/GaN multiple quantum wells (MQWs) fabricated by molecular-beam epitaxy (MBE) and metal-organic chemical-vapor deposition (MOCVD), as well as in an MBE-grown GaN/(Al,Ga)N MQW. A method based on cathodoluminescence spectroscopy is proposed to be suitable for a reproducible measurement of the power dependence of and Et. The experimental results are fit to a recently developed model allowing for a distinction of localization and electric-field effects for and Et, as well as for the extraction of the localization energy, density of localization centers, and radiative recombination rate of localized excitons. In the (In,Ga)N/GaN MQWs grown by MBE and MOCVD, we found a value of the localization energy of 34 and 100 meV, respectively. In the MBE-grown GaN/(Al,Ga)N MQW, the exciton recombination is dominated by quasifree excitons even at low temperatures.