Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Ship roll stabilization control with low speed loss

Liu, Zhiquan and Jin, Hongzhang and Grimble, Michael and Katebi, Reza (2014) Ship roll stabilization control with low speed loss. In: OCEANS '14 MTS/IEEE. IEEE, Piscataway, New Jersey. (In Press)

[img] PDF (Liu-etal-ocean14-ship-roll-stablization)
ocean_14_Taipe.pdf - Preprint

Download (742kB)

Abstract

Large roll motion induced by waves can severely affect the ability of vessels and the speed will loss due to added resistance which caused by ship motions, especially in moderate to high sea states. With increasing needs of fuel efficiency and greenhouse gas (GHG) emissions, the effect of added resistance on surface ship performance must be considered when a ship fin stabilizer control system is designed. In this paper, we investigate basic principles of added resistance in oblique waves and ship calm water resistance. An alternative approach for reducing speed loss while keeping the satify roll reduction percentage, is proposed by controlling both roll and roll rate at the same time. A double nonlinear generalized minimum variance (NGMV) controller is used for achieving this objective. Finally, the effectiveness of the method is demonstrated.