Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Application of finite difference time domain method to high voltage substations : switching transient fields

Musa, Bukar Umar and Siew, Wah Hoon and Judd, Martin and Wang, Tao and Li, QM (2013) Application of finite difference time domain method to high voltage substations : switching transient fields. International Journal of Engineering, Science and Innovative Technology, 2 (5). pp. 20-29.

Full text not available in this repository. (Request a copy from the Strathclyde author)


Operation of switchgear equipment in high voltage substations results in the propagation of transient currents in bus bars. The bus bars temporarily act as antennae, producing transient electromagnetic fields within the substations. With the introduction of new technology (microelectronics) into the substations for measurement and control purposes, there is renewed interest in the assessment of the electromagnetic environment of substations to ensure electromagnetic compatibility. This assessment is gaining increased importance as new equipment could be located very close to the switch being operated, potentially making the electronic equipment more vulnerable to disturbance. This paper discusses the prediction of transient electromagnetic field emissions due to switching operations in a typical 400kV air insulated substation using the Finite Difference Time Domain (FDTD) method. Electromagnetic fields radiated by bus bars due to transient currents during switching were evaluated at various positions within the substation. The effects of adjacent substation equipment and of ground conditions on the radiated fields were also investigated. Finally the dominant frequency components of the radiated fields were identified and were found to be in general agreement with measured values.