Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Shroud design criteria for a lighter than air wind energy system

Samson, Jonathan and Katebi, Reza (2014) Shroud design criteria for a lighter than air wind energy system. Journal of Physics: Conference Series, 524 (1). ISSN 1742-6588

[img] PDF (shroud-design-criteria-SamsonKatebi2014)
shroud_design_criteria_SamsonKatebi2014.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)

Abstract

Airborne Wind Energy (AWE) is a novel form of wind energy research looking to utilize the greater wind resource at higher altitudes. This paper focuses on a lighter than air system developed by Altaeros Energies. Using two force ratios the relationship between the buoyancy and aerodynamic force is related to the geometric parameters of the shroud. A dependence on a so-called area ratio is also shown relating the shrouds area to the shrouds throat area used as a reference for aerodynamic calculations. This ratio was varied in simulation and was found to have a marked effect on the driving forces over the shroud. Finally, an investigation into whether helium or hydrogen should be used for this application is shown. It is found that the design of the shroud has to be aerodynamically optimized for successful operation and that the choice of which gas to employ becomes one of safety rather than enhanced performance.