Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

One-pot synthesis of branched poly(styrene-divinylbenzene) suspension polymerized resins

Durie, S. and Jerabek, K. and Mason, C. and Sherrington, D.C. (2002) One-pot synthesis of branched poly(styrene-divinylbenzene) suspension polymerized resins. Macromolecules, 35 (26). pp. 9665-9672. ISSN 0024-9297

Full text not available in this repository. (Request a copy from the Strathclyde author)


Spherical particulate polymer resins have become ubiquitous support materials in both solid phase synthesis and in the heterogenizing of homogeneous catalysts. In the former case lightly cross-linked so-called gel-type species are favored whereas in the latter so-called macroporous species are finding increasing utility. Despite the success of these materials, mass transfer limitations can lead to poor performance, and in this context there is still a need for improvement in the morphology of these species. One potential advancement would be resins with a highly branched backbone architecture since such a molecular level structure would in principle generate a large proportion of functional groups near chain ends or at least on mobile chains anchored to the main matrix by a single linkage. In addition a high level of chain ends relative to that in conventional resins might lead to novel solvation characteristics. We now report a facile one-pot suspension polymerization which allows synthesis of both branched gel-type and branched macroporous resins. The procedure is an adaptation of our earlier reported methodology for producing soluble branched vinyl polymers and involves use of controlled levels of a free radical chain transfer agent which functions in effect to limit chain growth and in combination with a cross-linking comonomer leads essentially to branched backbone architectures. The system styrene/divinylbenzene/dodecanethiol has been probed in detail, and a range of experimental conditions have been identified which lead to branched gel-type and branched macroporous resins. The structure of these has been evaluated from solvent swelling data, dry state surface area measurements, and inverse size exclusion chromatographic data.