Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Short-term spatio-temporal prediction of wind speed and direction

Dowell, Jethro and Weiss, Stephan and Hill, David and Infield, David (2014) Short-term spatio-temporal prediction of wind speed and direction. Wind Energy, 17 (12). pp. 1945-1955. ISSN 1095-4244

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper aims to produce a low-complexity predictor for the hourly mean wind speed and direction from 1 to 6 h ahead at multiple sites distributed around the UK. The wind speed and direction are modelled via the magnitude and phase of a complex-valued time series. A multichannel adaptive filter is set to predict this signal on the basis of its past values and the spatio-temporal correlation between wind signals measured at numerous geographical locations. The filter coefficients are determined by minimizing the mean square prediction error. To account for the time-varying nature of the wind data and the underlying system, we propose a cyclo-stationary Wiener solution, which is shown to produce an accurate predictor. An iterative solution, which provides lower computational complexity, increased robustness towards ill-conditioning of the data covariance matrices and the ability to track time-variations in the underlying system, is also presented. The approaches are tested on wind speed and direction data measured at various sites across the UK. Results show that the proposed techniques are able to predict wind speed as accurately as state-of-the-art wind speed forecasting benchmarks while simultaneously providing valuable directional information.