Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Effective classification of Chinese tea samples in hyperspectral imaging

Kelman, Timothy and Ren, Jinchang and Marshall, Stephen (2013) Effective classification of Chinese tea samples in hyperspectral imaging. Artificial Intelligence Research, 2 (4). ISSN 1927-6974

[img] PDF (Effective Classification of Chinese Tea Samples in Hyperspectral Imaging)
Effective_Classification_of_Chinese_Tea_Samples_in_Hyperspectral_Imaging.pdf - Preprint

Download (751kB)

Abstract

Maximum likelihood and neural classifiers are two typical techniques in image classification. This paper investigates how to adapt these approaches to hyperspectral imaging for the classification of five kinds of Chinese tea samples, using visible light hyperspectral spectroscopy rather than near-infrared. After removal of unnecessary parts from each imaged tea sample using a morphological cropper, principal component analysis is employed for feature extraction. The two classifiers are then respectively applied for pixel-level classification, followed by modal-filter based post-processing for robustness. Although the samples look similar to the naked eye, promising results are reported and analysed in these comprehensive experiments. In addition, it is found that the neural classifier outperforms the maximum likelihood classifier in this context.