Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Effective classification of Chinese tea samples in hyperspectral imaging

Kelman, Timothy and Ren, Jinchang and Marshall, Stephen (2013) Effective classification of Chinese tea samples in hyperspectral imaging. Artificial Intelligence Research, 2 (4). ISSN 1927-6974

[img] PDF (Effective Classification of Chinese Tea Samples in Hyperspectral Imaging)
Effective_Classification_of_Chinese_Tea_Samples_in_Hyperspectral_Imaging.pdf - Preprint

Download (751kB)

Abstract

Maximum likelihood and neural classifiers are two typical techniques in image classification. This paper investigates how to adapt these approaches to hyperspectral imaging for the classification of five kinds of Chinese tea samples, using visible light hyperspectral spectroscopy rather than near-infrared. After removal of unnecessary parts from each imaged tea sample using a morphological cropper, principal component analysis is employed for feature extraction. The two classifiers are then respectively applied for pixel-level classification, followed by modal-filter based post-processing for robustness. Although the samples look similar to the naked eye, promising results are reported and analysed in these comprehensive experiments. In addition, it is found that the neural classifier outperforms the maximum likelihood classifier in this context.