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Abstract— This paper describes a novel system for mobile robot localization in an indoor environment, using concepts like 

homography and matching borrowed from the context of stereo and content-based image retrieval techniques (CBIR). To deal with 

variations with respect to viewpoint and camera positions, a group of points of interest (POI) is extracted to represent the image for 

robust matching. To cope with illumination changes, we propose to produce a contrast image for each video frame by using the root 

mean square strategy, thus all the POIs are extracted from the corresponding contrast images to provide perceptually consistent 

measurement of image content. To achieve effective image matching, modeling of robot behavior for model constrained matching is 

proposed, where normalized cross correlation is employed for local matching to determine corresponding POI pairs followed by 

homography based global optimization using RANSAC. Meanwhile, application of specific constraints also helps to exclude irrelevant 

frames in the training set to further improve the efficiency and robustness. The proposed approach has been successfully applied to the 

Robot Vision task for the ImageCLEF workshop, and the experimental results have fully demonstrated the high-quality performance 

of our approaches in terms of both precision and robustness. The system and approach outlined in this paper was ranked the second 

best in the optional task group in ImageCLEF 2009. In addition to demonstrating the merits of our approach in isolation, we also 

illustrate the benefits of our proposed approach in comparison with other submissions.   
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I. INTRODUCTION 

Robot vision has a wide range of applications in both science and industries such as aerospace, security, and military. For 

example, in aerospace, the UAV (Unmanned Aerial Vehicles) airplane relies on a global positioning system (GPS) and visual 

sequence captured during flying to navigate a route. This process requires the system to detect landmarks in order to determine 

the position of the aircraft. Another example is in military services, robots are often used to explore an area that is too dangerous 

for soldiers, i.e. in an effort to reduce casualties. These types of operations require the military robot to annotate its environment 

so that it can be located. Thus, the requirement for constant and precise knowledge of the location and motion of the mobile 

robot is extremely critical.  

One of the key objectives in mobile robotics is to provide an autonomous mobile robot with the ability to take a role in 

various tasks under different environments. To achieve this, the robot needs to be able to recognize its location; this can be 

achieved through some sort of localization methodology and has led to an important topic and area of research, namely mobile 

robot localization. Mobile robot localization has been a topic of interest for many years [16] [17], which aims to determine a 

robot‟s position in a map or in a learned map. Given the initial robot position, local tracking is the problem of keeping track of 

that position over time. Global localization provides mobile robots with the capabilities to deal with initialization and recovery 

from occlusion [18]. Visual based localization using natural landmarks is highly desirable in comparison with sensor based 

localization. Sensors such as sonar sensors and range finders can suffer from problems due to reflections; this problem can be 

eliminated when using only visual information for localization. 

This paper describes our recent research on vision based mobile robot localization, which formed the basis of our submission 

for the ImageCLEF 2009 Robot Vision task [1]. The goal of this task is to address the problem of topological localization of a 

mobile robot using visual information. Given a test sequence, a system/algorithm must be able to provide information about the 

location of the robot, where part of the relevant location information is available in the training set. Since the determined location 

of the robot can be regarded as a kind of annotation, the corresponding task is considered as an extension of image annotation 

and retrieval. Details of the task are discussed in Section II (B). 

In order to provide a solution for the task outlined, we are proposing the following solution which attempts to address and 

overcome many of the difficulties involved. The primary novelty of this paper is a methodology for obtaining robust feature 

extraction for image representation together with model constrained matching scheme where the moving behavior of the robot is 

modeled to guide the whole process, based on the concepts like homography and matching borrowed from the context of stereo. 

First, a contrast image is produced for each video frame, which can provide a perceptually consistent measurement of image 

content in spite of illumination changes. Secondly, a group of POIs is extracted from the corresponding contrast image for 

feature representation of images, which is invariant to changes of viewpoint and camera positions. Thirdly, modeling robot 



behavior for model constrained matching of POIs is employed for both efficiency and robustness, where normalized cross 

correlation and RANSAC are respectively applied to determine corresponding POI pairs and to determine a homography 

between two sets of POI pairs. It is worth noting that the model specific constraints can help improve the matching performance 

in terms of efficiency, accuracy and robustness by excluding irrelevant samples in the training set.  

The remainder of this paper is organized as follows. In Section II, we describe previous state of the art in the area of robot 

vision and outline the objectives of robot vision task in ImageCLEF 2009. In Section III, the basic POI detector and its improved 

version using our derived contrast image are presented. In Section IV, modeling of robot behavior for model-constrained 

matching is presented. Experimental results from ImageCLEF 2009 and discussions are presented in Section V, and finally some 

concluding remarks are drawn in Section VI. 

II. RELATED WORK 

In this section we describe the state of the art in the area of mobile robot localization, including general solutions for this field 

and specific requirements from ImageCLEF 2009. Since this is the first time a mobile robot vision task has been introduced in 

the ImageCLEF workshop for benchmarking, the corresponding details for the task and workshop are also presented.  

A. Previous Work in General Mobile Robot Localization 

Castellanos et al. [20] propose a method for landmark-based map acquisition and robot localization where the use of external 

mechanisms, such as a Charge-Coupled Device (CCD) camera and a 2-D laser rangefinder, are implemented. In the cases 

addressed in this work, the robot followed a predefined trajectory and stopped at regular intervals to obtain information. 

Complementary information was taken, by hand, which provided real locations of the robot with respect to a base reference. A 

mapping algorithm with continuous localization has been proposed by Yamauchi et al. [21]. Sonar‟s, as well as laser 

rangefinders, were used with a greater confidence for the laser range data. The mapping was based on a certain exploration 

method, called Frontier-Based exploration. The algorithms outlined are based on sensor models and configuration, and on how 

detectable the selected features are. In the numerous cases where the sensor system can be unreliable, due to for example the 

ultrasonic transducers or because of effects like specular reflections or cross-talk, these modeling methods have additional 

problems. Moreover, these procedures are highly task dependent, so their parameters need to be re-adjusted to the conditions of 

the specific environment under exploration.  

Recently, more attention has been focused on vision based methodologies for robot localization, which has mostly been 

adopted in robot navigation [2] and location recognition [3]. The main difficulty for vision based localization of robots is how to 

learn and determine the views of an environment with respect to viewpoint changes, which can result in different illuminations 

and occlusions for example. Most existing visual features are affected by varying viewpoints and illumination changes, thus 



these factors are extremely critical for an effective system.  

The most popular vision based methods can be categorized into landmark recognition, geometric recognition, object 

recognition and probabilistic approaches. A great deal of previous work in this area relates to landmark-based methods, these 

methods use local features to detect vertical lines or specific signs for controlling robot motion [7]. The types of systems that use 

this approach usually require an a priori map of the environment. For example, Sim and Dudeck [22] use regions of the scene 

and images with a high number of edges as natural landmarks. The main advantage of landmark-based methods is that they have 

a bounded cumulative error. Although these features are easy to extract, they are not always available in image sequences.  

Geometric methods mostly rely on sparse features such as POI and straight edges to describe a given scene, followed by an 

image matching algorithm, in order to match visual features of query images with images in the database. For example, Althaus 

et al. [8] use line features like detected edges to determine corridors and doorways. In Ohya et al. [6], an expectation image is 

first rendered from training images as a model, and then the current location of the robot is determined by matching edges 

extracted from the model image and a query image, respectively. However, their results are sensitive to the number of landmarks 

in the image, plus it also relies on information from an ultrasonic sensor, thus it is not purely visual.  

Localization by using object recognition techniques have proved to be a promising approach, as these methods utilize natural 

features. Se et al. [23] use scale-invariant visual marks to deal with mobile robot localization based on the local feature detector 

and the SIFT descriptor proposed by Lowe [24]. Wang et al. propose a strategy based on the Harris-Laplace interest point 

detector and the SIFT descriptor [25]. In this system, each location is represented by a set of interest points instead of using all 

pixels. The system then compares one frame to all frames in the database using a nearest neighbor search. Katsura et al. [26] 

developed a system for detecting location in an outdoor local setting; the system can obtain the location by matching areas of 

trees, sky, and buildings. However, the matching in their approach is severely affected by occlusions.  

A probabilistic approach normally uses machine learning methods to learn the properties of different locations, and then 

classify the query image into one of the classes based on the distance or probability between this image and every image class. 

Torralba et al. [4] use global gist features [5] to train a Gaussian mixture model (GMM) representation for a set of locations. 

Pronobis et al. [9] propose a method for visual place recognition by measuring the confidence level of the classification output 

from a support vector machine (SVM), based on the distance between a query image and the average distance of training vectors 

from each location. Since training classes usually need some prior knowledge of the training examples, they may produce 

unsatisfactory results if there is a lack of training examples, such as the samples of unknown rooms. Moreover, this approach is 

expensive in terms of computation. For example, for one single run it could take up to 2.5 days to finish, as reported in [9]. In 

addition, the number of training classes will increase greatly due to the possible combinations of different rooms and different 

illuminations, which may in turn harm the accuracy and also reduce the efficiency of the approach. 



Thus far we have highlighted various approaches to solve the difficult challenges associated with robot vision. In the 

following subsection, we describe the difficulties, challenges and the details of the new robot vision task from ImageCLEF 2009.  

B.  Robot Vision Task in ImageCLEF Workshop  

According to the official webpage, ImageCLEF is the cross-language image retrieval track run as part of the Cross Language 

Evaluation Forum (CLEF) campaign starting from 2003 [19]. In ImageCLEF 2009, a robot vision task for mobile robot 

localization was introduced, with the aim of retrieving robot images using visual information. Accordingly, a task of high 

priority is defined and participants are asked to provide information about the location of the robot separately for each test image 

when only some of the images from the test sequences are available or the sequences are scrambled. This corresponds to the 

problem of global topological localization, where continuity of temporal information is not required. Meanwhile, an optional task 

is also defined for robot localization, in which exploiting continuity of the sequences and relying on the test images acquired 

before the classified image is allowed. It should be noted that for the workshop that an algorithm would be considered invalid if 

future frame information is used to classify current ones. Since temporal information has been employed in our approach for 

refined matching, our work is in the optional task group. 

The robot vision task at ImageCLEF 2009 provided users with a common dataset and test bed on which state of the art 

techniques on robot localization techniques can be evaluated and ranked. For all the participants, a group of training data 

consisting of image sequences recorded in an indoor environment at a given time is provided, which includes a five-room 

subsection (kitchen, printer area, one-person office, two-person office and corridor) under three different illumination conditions 

(sunny, cloudy and night). The challenge for the participants in the robot vision task is to build a system able to answer the 

question 'where am I?' (I'm in the kitchen, in the corridor, etc), i.e. to assign each test image to one of the five venues or to 

indicate that the image comes from an unknown room. Moreover, the systems were allowed to refrain from making a decision 

(e.g. in the case of lack of confidence). As the moving speed of the robot is assumed to be limited, this allows the image 

matching function to work on a predictable range of possible matches. 

The floor plan of the environment and samples of different rooms under different illumination conditions are shown in Fig.1 

and Fig.2, respectively. As shown in Fig. 1, the five locales have quite different layout and settings. Though they can easily 

identified by humans, provided the whole „image‟ of the venue is seen. However, as shown in Fig. 2, this becomes very difficult 

when only a very small part of the venue can be observed by the robot, additional difficulties for the task include variations in 

illumination conditions and camera view point. Since the test images are acquired 6-20 months after the training sequence, such 

variations are unavoidable and also may introduce more difficulties as discussed below.  

One additional difficulty is introduced due to the unpredicted content changes in the captured images, which include adding, 

removing, or relocating of human or non-human objects. The latter can be found as furniture like chairs, curtains, room 



decorators and small objects on the table, etc. Consequently, matching of images for robot localization needs to be insensitive to 

such changes. 

 

 

Fig 1. Map of an office environment. 

 

 

Fig 2. Sample frames in the training sequences. From top left to bottom right, the first 15 form 5 groups of images under 3 illumination conditions, which are 

captured from five venues including single-person office, corridor, printer area, kitchen, and two-person office, respectively.  The last three images are two-

person office, corridor and kitchen, and they are used to show the content changes in comparison with other sample images within the same venue. 

 

In addition, rooms which are excluded from training but used for testing also make the whole task more challenging. Since 

the office venues share common environmental and building conditions, as shown in Fig. 2, their images appear of quite similar 

background and comparable furniture settings. As a result, to locate an unknown room becomes an extremely hard problem for 

this task. 



To overcome these difficulties, we have proposed robust point based feature extraction and model constrained matching 

towards automatic robot localization in the robot vision task in ImageCLEF 2009. The system is mainly designed for use in 

autonomous navigation, where limited knowledge of the environment is available. The main assumption here is that the content 

information extracted from the scene provides enough features for matching. It is worth noting that this is achieved using vision 

based methods rather than external sensors, and the relevant details are discussed in the next two sections.  

 

III. ACCURATE AND ROBUST DETECTION OF POIS  

A key requirement for real-time robot location detection system is its fast performance on image matching. The matching 

problem that we have to solve, in order to find the images in the database that are most similar to the ones taken by the mobile 

robot, is one of so-called intensity-based image matching via full search [25]. This method captures the similarity between the 

intensity profiles of the two images. Given an intensity value at one pixel from one image, it searches looping through all the 

pixels on the other image to find the best match. This creates a problem of system efficiency, as for example pixels in the 

homogeneous texture domain contain high redundancy. Therefore, in our approach special attention is paid to selecting regions 

with higher information content instead of using all pixels.  

Detection of POIs has recently received increasingly attention in the computer vision domain. An interest point is a point in 

the image that is rich in terms of local information content. In addition, an interest point is stable under local and global 

perturbations in the image domain, including deformations such as those arising from perspective transforms as well as 

illumination variations, such that the interest points can be reliably computed with high degree of reproducibility. Considering 

these characters, image matching via POI can be a good solution for our task for finding relevant images in image search, 

especially given its performance in illumination variations. In our approach, we have chosen corner features as POI since corners 

are discrete and partially invariant to scale and rotational changes. 

A. Original Harris Detector 

One of the most commonly used POI detection methods in computer vision applications is the Harris corner detector [10], 

which is used in our system as it is invariant to rotation, scale, illumination variation and image noise [38]. The Harris corner 

detector is based on Harris and Stephens improved upon Moravec's corner detector [11], by considering the differential of the 

corner score with respect to direction. This corner score is often referred to as autocorrelation, which can be described as follows. 

http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Autocorrelation
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where an image is given by I; w  represents an image patch over the area;  (x,y) is a set of pixels around; and the angle brackets 

denote an averaging process. 

The “cornerness” response function of the Harris corner detector is based on the determinant and trace of the autocorrelation 

matrix, where ]15.0,04.0[k  as suggested in the literature [11]. 

2))(()det( AtracekAMharris      (2) 

B. Dealing with Illumination Changes 

Although the conventional interest point detectors (IPD) can successfully locate corner points in images, generally they will 

fail or show lack of robustness when there are large illumination changes. To cope with the illumination changes in images, we 

detect points of interest from a normalized image, rather than the original image. Let    be a normalization function, the 

improved detector propM is defined in Eq. (3) below, where B  is the autocorrelation matrix of the normalized image and 

)(ˆ II   is the image of normalized contrast. 

2))(()det( BtracekBM prop        (3) 
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As seen, the normalization function    is the key to the solution above, where several typical options can be summarized 

as follows. In [12], Gevrekci et al. reported an approach called illumination robust feature extraction transform (IRFET). The 

idea is to stretch the image contrast as a function of intensity, in order to span the space of possible photometric transformations 

and to help to simulate a particular illumination condition. The contrast function introduced in that paper is given by 
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where  yxI , is the normalized intensity value, c is the contrast center around which the contrast is stretched, and  is a 



parameter to determine the slope of the sigmoid function. Since IRFET  is obtained for ]1,0[c with a step size of 0.05, the 

overall results are very sensitive to the selection of c  from its 200 candidate values. Unfortunately, for a given image the method 

to select a suitable c  is undetermined. As a result, for an image pair it may be required to match 200200  times to achieve the 

best result in dealing with illumination changes. 

To overcome this drawback, we have adopted a different strategy for dealing with illumination changes. According to the 

characteristics of human visual perception, the details that we can observe from an image depend on a local contrast ratio rather 

than the intensity and this can be applied in our system to yield normalized image of refined contrast. We have considered three 

typical contrast functions including Weber, Michelson, and Root Mean Square as will be discussed below.  

Weber contrast function [12] focuses on the luminance of the pixel and the background luminance.     

b

b
weber
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IyxI
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where ),( yxI and bI represents the luminance of the pixel and the background luminance, respectively. This function is 

commonly used in cases where small features are present on a large uniform background, i.e. the average luminance is 

approximately equal to the background luminance. However, this seems unsuitable for our task, as we intend to enhance the 

contrast of the background for effective extraction of POIs, rather than enhance the contrast of the foreground objects.  

Michelson contrast [13] is another commonly used method to deal with luminance adjusting, which is defined as: 

minmax

minmax)),((
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where maxI  and minI  refer to the maximum and the minimum intensity in an image region or a whole image. Due to the native 

of the definition, this function is sensitive to noise, especially when there are isolated bright and/or dark pixels. 

Root Mean Square (RMS) contrast is defined as the standard deviation of the pixel intensities below [30],  
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where  yxI ,  is the intensity value of an image region sized M*N, I is the corresponding average intensity which has been 

normalized to 1. As can be seen, RMS is insensitive to isolated noisy pixels and also helps to enhance the contrast of background 

pixels, as the standard deviation used can naturally smooth such noise and reflect the level of intensity changes in a local 

neighborhood. Consequently, the resulting image can keep fine details and enable effective extraction of POIs for matching.  

For a given image, the contrast images obtained using the three functions above are shown in Fig. 3, where a 55  local 

window is utilized in determining the local contrast. As can be seen, Weber fails to keep fine details even for areas whose 



intensities differ significantly from neighboring ones, such as the ceiling lights, though it generates less noise. On the contrary, 

the result of Michelson contains a great deal of noise as a result of abrupt contrast changes. Finally but not surprisingly, the result 

from RMS appears to be the best among this group of results. This is due to two main reasons: The first is normalized average 

intensity to overcome the effect of illumination changes, and the second is the root-mean-square processing used to help 

constrain noise [30]. Consequently, RMS has been employed in our system to generate a normalized contrast image in dealing 

with illumination changes.  

 

  

  

Fig 3. One original image (top left) and three contrast images obtained using functions of Weber (top right), 

Michelson (bottom left) and RMS (bottom right), respectively. 

 

  

Fig 4. Extracted POIs from the original image (left) and the RMS contrast image (right) of Fig. 3. 

 



Based on the original image in Fig. 3, Fig. 4 shows results of extracted POIs using Harris detector (implemented in OpenCV), 

where the left and the right images are those extracted from the original image and the RMS contrast image, respectively. Unlike 

POIs extracted from the original image, POIs extracted from the RMS contrast image can reject those unreliable points on 

homogeneous regions like the floor whilst keeping useful points. Although RMS helps to reduce false corner points, it has 

detected much more corner points near the right boundary of the image and also one the door in the central area of the image. In 

other words, it helps to re-balance the distribution of the corner points in comparison to those detected from the original image. 

As a result, noise is suppressed towards more robust image matching in the next stage. 

To provide further validation for our proposed strategy, we present another example of group of results of extracted POIs in 

Fig. 5, where the input image is under different illumination conditions. Again, most of unreliable POIs have been reduced whilst 

keeping useful points. These examples demonstrate the effectiveness of our introduced strategy in dealing with illumination 

changes. In the following section we outline our approach for introducing constraints on the model that we apply for robot 

localization. 

 

  

  

Fig 5. Another group of results under different illumination conditions: the top left one is the original image, and the top right one is its RMS contrast image. The 

bottom left and bottom right ones are extracted POIs from the original image and the RMS contrast image, respectively. 

 



IV. MODEL-CONSTRAINED MATCHING FOR ROBOT LOCALIZATION 

Given the extracted POI in both training and test sequences, the next step is to compute the similarity between each test frame 

and all the frames in the training sequence to find the best match, so that the test frame will be annotated as the venue associated 

with the matched frame of the training set. To improve both efficiency and accuracy, application specific constraints are applied 

for matching the POIs. This strategy for feature matching and the relevant details for model-constrained frame annotation are 

outlined in the following subsections.  

A. Application Specific Modeling of Robot Behaviors 

By studying the environmental settings and the training sequences released as part of the Robot Vision task in ImageCLEF 2009, 

we find that the robot does not move „randomly‟ and that the robot‟s behavior is somewhat constrained by environment settings. 

These constraints can be summarized into three rules as follows.  

Rule 1: Time length. The period of time that the robot stays in one venue is always more than 3 seconds, i.e. 15 continuously 

frames at 5fps. Accordingly, the robot will not stay in one place for a period less than 
0N  frames, where 

0N  is determined as 

being 20 as a result of statistically analyzing the training sequences.  

Rule 2: Jumping room. The robot has to cross the corridor before it enters other venues such as kitchen, offices and printer 

area. In other words, the robot cannot bypass the corridor to go from one venue to another, i.e. jumping room is not allowed.  

Rule 3: Unknown rooms. Since the test sequence contains additional rooms that are not included in the training sequences, 

no corresponding frames in the training set could be used to annotate these rooms. In addition, due to the nature of the image 

matching algorithm, that one test frame will be annotated with the most similar frame in the training set, a false annotation seems 

unavoidable. In our system, however, it was found that the consistency between the unknown frame and the training frames is 

very limited. This forms another rule for identifying unknown rooms, i.e. any test frame whose consistency below a given 

threshold will be annotated as an unknown room, details on how to define this consistency are outlined in Section IV(C).  

The rules described above have been generated by observing the data set and the behavior of the robot; it could be said that 

they are very specific for the robot vision task from ImageCLEF 2009. However, this type of methodology can be adapted and 

applied to other data sets for robot vision and localization, as in general the motion behavior of a robot is always constrained in a 

given closed environment. As the focus of this paper is on the application of the methodologies outlined above, we reserve the 

exploration of a more general solution for future work.  

B. Model-constrained Matching 

In order to facilitate the application of the three rules for robot localization outlined above, a model-constrained feature matching 

is employed in our system. When previous localization information is absent, e.g. for the first frame of the sequence, an 



exhaustive matching with all of the frames in the training set is required. Accordingly, the test frame will be classified into one of 

the 6 possible venues including printer area, corridor, two-person office, one-person office, kitchen or unknown room (applying 

Rule 3). Following on from this, the remaining two rules are applied as part of the matching process as follows.  

If the robot is found within a venue for less than 
0N  frames, full search is once again applied. Otherwise, the localization is 

treated as stable (applying Rule-1) and the localization process will move to the next step (applying Rule 2).  

Suppose the robot is determined to be stably in a specific venue rather than the corridor, in the next frame the robot can only 

appear in two venues, i.e. either remaining in the same venue or entering the corridor. As a result, the next test frame is only 

matched against the training frames from the same venue and the corridor, i.e. a much smaller subset in comparison with the 

entire training set. This will not only improve the efficiency but also improve both the accuracy and robustness of our approach 

for robot localization. 

If the robot is found stably in the corridor, it will remain in the corridor or move into a new venue. Accordingly, the next 

frame can be matched with all training frames with the exception of those within previous localized venues. In order to achieve 

this, the path history of the robot is recorded, and only the last non-corridor venue is excluded in matching for flexibility, i.e. to 

allow the robot indirectly revisiting a venue.   

Considering that both the training and test sequences are captured using the same camera in the same geographic condition, 

we assume that frames taken in the same location will contain similar contents and consistent geometric information. Thus, our 

matching process needs to consider this similarity and consistency. The process of matching frames using extracted POIs is 

discussed in full in the next subsection. 

C. Strategy for Feature Matching 

Inspired by stereo image matching which computes the disparity map of a sequence by estimating the similarity between the left 

and right channel of image, we consider the training and test sequences as a stereo image sequence in our experiment. Thus, we 

applied a similar procedure to compute the similarity.  

  Suppose the matching can be represented by the homography between POIs of an image pair, then POIs mapped from one 

image to the another image would coincide exactly with their correspondences. Generally, the homography is only an 

approximation of the mapping, thus mapped POIs cannot coincide exactly, i.e. containing false matches. The acceptance of a 

putative matching is then to be considered in more detail, this will be discussed in two steps as follows. 

1) Local matching to find corresponding POI pairs  

For a given POI in a reference image 1I , its corresponding POI in image 2I  is determined via local image matching using  

Normalized Cross Correlation (NCC) criterion [31]. Let ],1[},{ 1Nixi   and ],1[},{ 2Njy j   be two sets of POIs extracted 



from 1I  and 2I , respectively. For each ix  in 1I , its best correspondence *jy  in 2I  is determined using NCC as 
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where x~  belongs to )( ixW , a local window in 1I  centered at ix  and 1I  is its mean intensity. Similarly, )(~
jyWy  , a local 

window in 2I centered at jy  and 2I  is its mean intensity. 

If there is another correspondence *),'( ji determined before, choose *i as the matched point for *j by 
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      (11) 

In addition, if the associated NCC value is less than a given threshold ncct , the determined point correspondence is treated as 

invalid. In our system, ncct  is set as 60% of the maximum NCC value among all POI correspondences.  

2) Global matching using RANSAC  

Once an initial set of POI correspondences are obtained using NCC, the next step is to verify these local correspondences 

using a global constraint, where homography among these matched pairs of POI is determined to achieve affine-invariant 

matching of images. The idea behind is based on the fact that images captured from one particular scene in testing and training 

sets can be regarded as stereo pairs. This is because these images are captured by the same robot under various viewpoints along 

with possible change of lighting conditions. As a result, these images should share common contents with limited difference that 

can be tolerated during our homography-based matching. On the other hand, a failed matching may indicate that the test image 

does not belong to the venue associated to the training one. 

To determine the homography between two sets of POI obtained for the test image and the training image, the RANSAC 

algorithm [14] is used to select an optimized subset of their matched POI correspondences. When the homography is determined, 

the number of matched POI pairs from the RANSAC algorithm is then denoted as a degree of consistency measurement between 

the images. Meanwhile, POIs which are excluded in the matching are treated as outliers and disregarded for robustness. 

According to the POIs extracted from the images in Fig. 5, examples of matched points from two images with different 

illumination conditions are shown in Fig. 6, where a pair of corresponding POIs is represented by „green *‟ and „red +‟. As can 

be seen in the example, the approach that we have adopted has successfully filtered inconsistent POIs towards reliable matching 

of images. It is also noteworthy that there are mis-matched points in Fig. 6, and these are mainly due to the fact that the images 

under processing are not strict stereo pairs. To allow RANSAC to be applied in such a different problem, we adjusted the 



tolerance in the algorithm for robustness. As a result, global matching can still generate satisfactory results despite of these errors 

in matching.  

 

 

Fig 6. The matching map, the points linked with lines refer to a pair of matched POIs. 

 

When a test image is compared with all frames in the training set, each homography-constrained matching determined by 

RANSAC generates a measurement of consistency. Rather than specifying the test image into the venue class of the frame who 

has the highest consistency measurement among all images in the training set, for robustness the first 
rN  best matched frames of 

highest consistency measurement are obtained to make the final decision. In addition, a diagram of our global matching scheme 

is presented in Fig. 7 to further explain how it works, and details of which is described below. 

 

 

 

 

 

 

Fig. 7. Block diagram of our global matching scheme.  

 

Let 
iCM  and 

iR  respectively refer to the value of consistency measurement and associated venue of the 
thi  best match from 

RANSAC, where ji CMCM   if ji   for ],1[, rNji  , i.e. 1CM  is the match of highest consistency measurement. If 

1CM  is less than a given threshold cmt , the matching is considered unreliable, which means that the test image has no satisfied 

matches in the training set. In other words, it is most likely that the test image comes from a venue excluded from the training 
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set, i.e. an unknown room. As a result, Rule 3 in Section IV(A) is applied to identify such cases, where cmt  is empirically set as 

15. Otherwise, the test frame will be associated with one of the five known venues as follows. 

Let v  be one of the five given venues in the training set, for each of them a matched degree (.)D  is determined as  

),()( viTagCMvD
i i                (12) 



 


otherwise

vRif
viTag

i

0

,1
),(      (13) 

Then, the test frame is annotated of the venue of maximum matched degree, i.e. ))(max(arg* vDv  . This is consistent with 

our assumption that the location can be retrieved by finding the most similar frame in the training sequence to the test sequence. 

As a result, the most similar frame should contain the most number of POIs to match with the test frame. 

 

V. RESULTS AND EVALUATION 

The proposed approach which has been outlined above was applied for mobile robot localization task in the ImageCLEF 

workshop in 2009, and the results are summarized and analyzed in this section.  

A. Data Set and Evaluation Criteria 

In the robot vision task of ImageCLEF 2009, a subset of KHL-IDOL2 database [27] is used for both training and testing.  For 

each of the three illumination conditions, i.e. cloudy, sunny and night, there are four training sequences which are captured by a 

camera mounted on a mobile robot. Data from two robots are provided, which form 24 sequences in total. During the testing 

stage, a single sequence of unknown illumination condition is utilized, which contains new venues which are excluded from the 

training sequences.  

To enable quantitative evaluations, annotated results are introduced in the captured sequences to denote the position of the 

robot. Such information is available in the training sequences as ground truth maps, and a score is used to measure the accuracy 

of annotated results in comparison with the ground truth. Actually, the score here attempts to reward systems for correctly 

annotating frames and also penalizing systems for incorrectly annotating frames, thus giving an overall indication of 

performance. The following rules are used when calculating the score for a single test sequence:  

 +1.0 points for each correctly annotated frame.  

 Correct detection of an unknown room is treated the same way as correct annotation.  

 -0.5 points for each incorrectly annotated frame.  

 0 points for each image that was not annotated (the algorithm refrained from the decision).  



In fact, a script is also provided by the ImageCLEF organisers to enable participants to evaluate the performance of their 

algorithms/systems as this script will generate a score for each annotated sequence by comparing it with the ground truth. 

According to the obtained scores, all the systems were then ranked and systems of higher scores are considered to be better than 

those of lower scores.   

B. Preliminary Evaluation using Training Sequences 

To measure the performance of our proposed approach over training sequences, two groups of experiments are implemented. In 

the first group, sequences under the same illumination conditions are used for training and testing. In the second group, on the 

contrary, sequences of different illumination conditions are mixed together during the training and testing process. Certainly, the 

first group will generate better results than the second group, but the second group is more practical and indeed a more robust 

evaluation matching the requirements of ImageCLEF. 

In each group of experiments, results of three solutions are compared. The first solution uses only conventional method for 

detecting POIs, followed by a coarse point matching, and this can be regarded as baseline. The second solution adopts 

illumination normalized scheme in the extraction of POIs, where the matching scheme remains the same. The third solution is 

achieved by introducing model-constrained matching into the second solution, thus it can be considered as a much improved 

version of the baseline system.  

 

Table 1. Performance of three solutions using cross validation  

 

Solution 1 

(Baseline) 

Solution 2  Solution 3  

ccurA  score ccurA  score ccurA  score 

Cloudy 73.1% 585.5 77.8% 640.0 79.7% 657.5 

Sunny 74.2% 600.5 78.0% 625.0 80.2% 655.5 

Night 71.9% 785.5 73.3% 815.5 76.1% 840.5 

Mixed 64.2% 565.5 71.6% 630.5 74.8% 661.0 

 

Herein, cross validation is employed for performance evaluation, where 75% of the training sequences are used for training 

and the remaining 25% for testing. The average accuracy ccurA  and score obtained are reported in Table 1. As can be seen, the 

proposed contrast-based illumination normalization and model-constrained matching indeed can improve the accuracy of the 

annotation results. In addition it can be seen that such improvements become significant when data of mixed illumination 

conditions is used.  



Also, it should be noted that a high score may be obtained even the annotation accuracy is low; this can be seen particularly 

in the results in the third row, i.e. from night conditions. This is brought about because the score and the accuracy are defined in 

an inconsistent manner. As mentioned above, the score is defined as an accumulated reward or penalty, and the accuracy is an 

average percentage of correctly annotated frames. Since the reward of 1.0 is higher than 0.5 for penalty, a longer sequence will 

certainly produce a higher score provided that an average accuracy of more than 50% is achieved. In fact, the sequences from 

night conditions are the longest in the whole group, and this explains the results in Table 1. Nevertheless, under a given test 

sequence such inconsistency can be disregarded, thus the final evaluation achieved is still consistent.  

To further analyze the annotated results, a confusion matrix is generated and shown in Table 2. This table provides an 

indication of how accurate the localization is in terms of the five venues including printer area, corridor, two-person office, one-

person office and kitchen (see for details in Fig. 1 in Section II). Based on the results in Table 2, several observations can be 

made and summarized as follows. Firstly, due to the similarity between corridor and printer area, about 7.1% printer area and 

11.8% of corridor frames are mis-annotated as the other. Secondly, the accuracy in annotating two-person office is the highest at 

nearly 87% due to its significant difference from other venues. Thirdly, due to two reasons the accuracy for annotating one-

person office is the lowest at about 75%. One is its narrow layout which makes it appear like the corridor. The other is the 

rectangle-shaped tables, which are very similar to the settings in the kitchen. As a result, 8.1% and 8.7% of one-person office 

frames are mis-annotated as either corridor or kitchen respectively. However, only 3.4% of corridor frames are mis-annotated as 

kitchen. Fourthly, about 10.3% of kitchen frames are annotated as one-person office, this again is due to the similar contents 

inside these frames. Finally, the average accuracy achieved is around 80.3% for the five venues, and this shows the effectiveness 

of our proposed approach.  

 
Table 2. Confusion matrix for the annotation results of five venues including printer area,  

corridor, two-person office, one-person office and kitchen. 

 Printer area Corridor Two-person One-person Kitchen 

Printer area 82.2% 7.1% 2.9% 3.3% 4.5% 

Corridor 11.8% 80.0% 2.7% 2.1% 3.4% 

Two-person 2.8% 4.5% 86.9% 2.5% 3.3% 

One-person 6.1% 8.1% 1.9% 75.2% 8.7% 

Kitchen 4.8% 2.6% 4.2% 10.3% 78.1% 

 

To further evaluate the performance of our proposed method, cross validation using 12 sequences provided by ImageCLEF 

2009 is carried out. Basically, these sequences are captured under three lighting conditions, i.e. cloudy, night, and sunny. 



Different combinations of these sequences form 12 tests and the results are report in Table 3. As can be seen, an average score of 

619.12 is obtained, which corresponds to an average accuracy of 78.2%. Also please note that under same accuracy, the scores 

can be significantly different, see for example for the tests in groups H and K. To overcome such inconsistency in evaluation, we 

introduce a normalized score  Ŝ  defined as lSS raw /ˆ  , where rawS is the raw score obtained using previous evaluations and l  

refers to the number of frames in the test sequence. Accordingly, normalized score for each test is calculated and also compared 

in Table 3. As seen, for test groups H and K, their normalized scores are quite similar to each other, thus the proposed 

normalized score Ŝ  provides a more consistent measurement of performance with the obtained accuracy. 

 

Table 3. Results of cross validation to further validate the effectiveness of proposed method.  

Tests Test seq 
Frames 

( l ) 
Training seq ccurA  

Score
 

rawS  Ŝ  

A 

 

Cloudy_1 

 

 

917 

Cloudy_2  

87.9% 745 0.8124 Night_1 

Sunny_1 

B 

 

Cloudy_2 

 

 

928 

Cloudy_3  

75.4% 639 0.6886 Night_2 

Sunny_2 

C 

 

Cloudy_3 

 

915 

Cloudy_4  

78.4% 625 0.6831 Night_3 

Sunny_3 

D 

 

Cloudy_4 

 

1022 

Cloudy_1  

73.0% 600 0.5871 Night_4 

Sunny_4 

E 

 

Night_1 

 

965 

Cloudy_1  

84.5% 740 0.7668 Night_2 

Sunny_1 

F 

 

Night_2 

 

951 

Cloudy_2  

73.6% 619 0.6509 Night_3 

Sunny_2 

G 

 

Night_3 

 

1034 

Cloudy_3 

68.4% 542.5 0.5247 Night_4 

Sunny_3 

H 

 

Night_4 

 

954 

Cloudy_4 

77.9% 635 0.6656 Night_1 

Sunny_4 

I 

 

Sunny_1 

 

893 

Cloudy_1  

88.4% 747.5 0.8371 Night_1 

Sunny_2 

J 

 

Sunny_2 

 

908 

Cloudy_2  

80.2% 626 0.6894 Night_2 

Sunny_3 

K 

 

Sunny_3 

 

485 

Cloudy_3  

77.4% 320.5 0.6608 Night_3 

Sunny_4 

L 

 

Sunny_4 

 

999 

Cloudy_4  

72.9% 590 0.5906 Night_4 

Sunny_1 

Avg.  914.25  78.2% 619.12 0.6798 

 



To illustrate the similarity between frames from different venues, Fig. 8 gives six typical frames extracted from the training 

set, which form three pairs shown in three columns. As can be seen, each pair of images is of quite similar content and layout but 

annotated differently. In other words, this shows the difficulty in venue determination for automatically robot localization using 

vision only information. As a result, the relative high accuracy achieved appears reasonably good. 

 

   

   

Fig 8. Examples of typical frames to illustrate the similarity of frames from different venues: The left column is from printer area and corridor; the middle 

column is from two-person office and kitchen; and the last column is from two-person office and one-person office, respectively. 

C. Performance of ImageCLEF Official Evaluation 

As mentioned previously, in the official evaluation only one sequence with unknown illumination condition and newly 

introduced venues was utilized. Based to the results announced by ImageCLEF 2009, the scores for the first four teams/systems 

are summarized in Table 4, where our proposed system is ranked as being second in the optional task group [29]. As can be seen, 

the best results achieved by the first three teams are quite comparable with a score around 900, for all of these approaches this is 

mainly due to the usage of neighboring frames in the past. Without utilizing this neighboring information, as reported in another 

task group, the highest score achieved is only 793.0 by the IDIAP team [19].  

 

Table 4. Results of the best 4 systems and their scores [19, 32] 

Team/System SIMD Proposed CVIU IDIAP 

Score 916.5 890.5 884.5 853.0 

 



It is worth noting that using neighboring frames after the current frame may significant improve the accuracy. For example, 

in a system proposed by CVIU the label of a test frame is iteratively corrected to the most frequent label in the sequence of ±20 

frames until convergence. Using such a smoothing procedure, a score of more than 1000 can be achieved. However, this is 

considered based on the rules of the robot localization task as invalid because the annotation relies on future information after the 

frame which is being annotated, which means that it is almost impossible to make a real time decision about the current location. 

In the following, techniques used by the other three teams listed in Table 4 are discussed and compared. In the SIMD system 

[33], a Monte-Carlo particle-filter is used to track the robot pose with extracted scale-invariant feature transform (SIFT) features 

to update the tracker. The pose ),,( yx  includes 2D position  ),( yx  and an orientation   of the robot. Despite the high 

complexity, this solution seems to lack flexibility, as the training process also relies on information provided by a distance sensor 

rather than only the camera output. In the CVIU system, a Gaussian gradient on the L component of the LAB color space is 

utilized as the main feature together with histograms from a three-tie spatial pyramid. Then a SVM is employed to compute the 

probability of a test frame to each room. Finally, a smoothing procedure is applied as post-processing by exploring multiple 

images, i.e. the label of a test frame is corrected to the most frequent label in the sequence of the past 20 frames. Although the 

smoothing procedure seems to satisfy the requirements of ImageCLEF 2009, details on how to avoid mis-annotation when the 

robot moves from one location to another are absent as this appears to be corrected via smoothing. In the IDIAP system, the main 

techniques used include Composed Receptive Fields Histograms (CRFH) and SIFT features in combination with a Harris-

Laplace detector, a Generalized Discriminative Accumulation Scheme (G-DAS) and SVM classifier, and relevant details can be 

found in [15, 28]. Temporal filtering for smoothing the results is also applied using five images before the classified image.   

In summary, point based features like SIFT and POI detector are widely used in this task, including the system from SIMD, 

IDIAP and us. Without complex features, tracking and learnt classifiers, our proposed method has yielded a reasonably good 

performance. Further analysis of the errors in annotation is discussed in the next section. 

D. Analysis and Discussions 

Using the available information, it is interesting to compare the annotated results from our system and SIMD with the published 

ground truth maps, and the results are shown in Table 5. In 1690 frames of the test sequence, our approach can correctly annotate 

1157 frames with an accuracy of about 68.5%. On the contrary, the accuracy of SIMD is only 63.8% if the rejected frames are 

considered as incorrect. However, SIMD has gained a higher score than our system because of the penalty caused by many more 

incorrectly classified frames in our system. Again, this shows the inconsistency of evaluation using the accuracy and score 

measurements.  



In 533 misclassified frames, 227 or 42.6% of them are from unknown rooms, i.e. absent from training sequences. In total 121 

frames are classified as being from unknown rooms in our system, of which 114 or 94.2% frames are correct. In other words, we 

have a low recall rate but a pretty high precision rate in detecting unknown rooms. 

 

Table 5. Detailed results from SIMD and our system 

Team/System Correct Wrong Reject Accuracy 

SIMD 1072 311 297 63.8% 

Our 1157 533 0 68.5% 

 

When analyzing the errors in our system, it is found that most of the incorrectly annotated frames are those transitional 

frames, i.e. when the robot leaves one venue or enters another. There are two main difficulties in addressing these transitional 

frames. In the first case, as shown in Fig. 9, frames taken close to the door (while the robot is entering a room) are very often 

lacking in texture, which makes extraction and matching of POIs impractical. More importantly, in the second case, these 

transitional frames may share similar visual contents but are associated with different venue tags, i.e. potential ambiguity in 

ground truth maps (see, for example, the images in the left column of Fig. 8).  

 

  

Fig 9. Example frames with limited texture information for POI extraction. 

 

To explain such ambiguity, it is necessary to discuss how these ground truth maps are obtained. In fact, the robot pose is 

estimated during the acquisition process using a laser based localization method. Each image is labeled as belonging to one of 

the five venues based on the position from where it was taken. As a result, images taken, for example, from the corridor, but 

looking into a room are labeled as corridor, even though their visual contents are those from inside a given venue [15, 28].  

From the point of view of image matching, it is very hard to make an appreciate decision in the two cases outlined above 

using the image content only, especially when feedback from future frames is absent. On the other hand, it might be useful to 

reject making decisions in these cases, and this certainly will improve the score that our approach achieved by avoiding penalty 

caused by misclassification.  



Regarding computational performance, overall our system needs 1.36s to test each frame, in which most of the time (over 

90%) is spent for POI extraction and matching. This performance is decent under implementation using Matlab, in comparison to 

SIMD system, which requires over 4s to process each test image. When the system was converted to C/C++ implementation with 

multi-thread based parallel processing, it only requires 0.18s to process one frame when it is tested on a quad-core CPU with 

4GB RAM. Further improvements in speed can be achieved by introducing hardware accelerator and strategies like skipping 

frame as used in other systems [39]. 

E. Analysis of Important Parameters 

In this subsection, the effects of several important parameters in the proposed method are discussed. These include ncct  and cmt  

which were introduced in Section IV, which respectively refer thresholds to filter unreliable point pairs in NCC and to detect 

unknown frames in RANSAC. In fact, in our system these parameters are empirically decided during the training process by 

maximizing the obtained classification scores. Please note the parameters determined are not guaranteed to be global optimal, 

this is simply because the test case containing unknown frames is different from the training one. However, it still provides a 

practical solution for this task. 

Regarding ncct , it refers to a percentage of the highest matching value during NCC in generating corresponding POI pairs. 

Larger ncct  will lead to less validated POI pairs, thus it will speed up the matching of RANSAC, and visa versa. On the other 

hand, too few POI pairs may cause unreliable estimation of the homography by RANSAC. As a result, a suitable value of ncct  

should be selected as a trade-off between the robustness and the efficiency of the estimate. To achieve this, we repeat the 

experiments in Section V(B) with various values of ncct  and the results are given in Table 6. As can be seen in Table 6, 

6.0ncct  generates the highest score in this test and thus the threshold is determined as 0.6. 

 

Table 6. Overall testing scores vs. various 
ncct  values. 

ncct  0.45 0.5 0.55 0.6 0.65 0.70 

Score 624.0 636.5 650.0 661.5 647.5 627.0 

 

To determine cmt  in detecting unknown rooms in the testing sequence, we need to simulate unknown rooms in the training 

set, as these are absent from the training sequences. Accordingly, we respectively treat three venues including kitchen, one-

person office and two-person office as unknown rooms. Consequently, the corresponding frames are excluded in training but 



used for testing under similar settings as outlined above. The average testing score from three manually introduced unknown 

cases is then obtained, as shown in Table 7. As can be seen, the highest score is generated by setting 15cmt .  

 

Table 7. Overall test scores vs. various 
cmt  values. 

cmt  5 10 15 20 25 

Score 632.0 657.5 682.0 668.5 643.5 

 

VI. CONCLUSIONS 

In this paper we have described a vision-based framework for mobile robot localization and applied our approach as part of the 

robot vision task for ImageCLEF 2009. The outlined approach is applicable to indoor environments to classify the current 

location of the robot into several predefined venues including unknown venues. The main contributions of this paper can be 

summarized as follows.  

 A novel POI image matching algorithm with consideration for the contrast effect has been developed. A certain amount 

of performance improvement is gained by using POI instead of using all of the pixels in the frame. Since the main 

assumption for the whole system has been that edge corner points contain more valuable information than other pixels, 

the reduced number of pixels for image matching results in a higher accuracy and overall efficiency for the overall 

system. The normalized contrast has the goal of keeping the effect from the lighting conditions to a minimum so that 

the system performance achieved can be as good as possible. 

 Modeling of robot behavior for model-constrained matching has been designed to simulate the moving behavior of the 

robot. This approach is aiming to refine the results from image matching using context constraints. Such constraints 

may predict and limit the possible annotated results, thus the exhaustive matching process is optimized for improved 

efficiency, accuracy, and robustness.  

 A normalized score is proposed for consistent performance evaluation of these systems.  

 

The evaluated results show our proposed method achieved the second highest score in the robot vision task in ImageCLEF 

2009, ranked just below the SIMD system. However, unlike the SIMD system, our approach did not rely on data from other 

sensors such as spatial location of the robot for training, thus it provided a more general and flexible vision-based framework for 

the robot vision task. The experimental results outlined in this paper show that model constrained matching is successful for 

robot localization since it considers visual information along with the motion behavior of the mobile robot. The results also 



reflect the magnitude of the difficulty of the problem at robot vision, such as how to annotate an unknown room correctly for  

example. While we have gained much insight into the practical problems involved in robot localization, future work will be 

focusing on how to accurately detect unknown rooms and deal with transitional frames. With further improved modeling of the 

two cases above, including possible rejected decision-making in dealing with transitional frames, we believe that much better 

results can be produced using our proposed methodology.  
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