Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Course filters for shape matching

Corney, Jonathan R. and Rea, Heather and Clark, Doug and Pritchard, John and Breaks, Michael and MacLeod, Roddy (2002) Course filters for shape matching. IEEE Computer Graphics and Applications, 22 (3). pp. 65-74. ISSN 0272-1716

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The collaborative reuse of engineering data is one way that e-commerce can significantly reduce the development costs of new products. However the proliferation of Web-based catalogs for standard components (such as brochure-ware for nuts and washers) only hints at the possible productivity gains. The research reported here is motivated by the belief that shape matching technology is the key to enabling a much deeper form of Internet-based collaborative commerce. This article describes the coarse "shape filters" that support a 3D, Internet-based search engine, known as ShapeSifter, which aims to locate parts, already in production, that have a shape similar to a desired 'newly designed' part. The research vision is that once component models are on the Web, and indexed by, say, the ShapeSifter (or some similar system), a designer could query the search engine by uploading a 3D model of the part required. The search engine would then analyse the shape characteristics of the target model and perform a similarity match on the contents of its database. The challenge of the research is to identify shape metrics that produce effective characterizations of 3D models for similarity comparison purposes. In this context, the work reported focuses on the use of three novel convex-hull-based indices to carry out a preliminary coarse filtering of candidates prior to more detailed analysis (such as the construction of multidimensional feature vectors). The article describes the crucial role played by two databases of benchmark objects.