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Gold nano-clusters were grown on chemically modified graphene by direct sputter
deposition. Transmission electron microscopy of the nano-clusters on these electron-
transparent substrates reveals an unusual bimodal island size distribution (ISD). A
kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility
rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility
of large clusters during surface growth. The cluster mobility exponent of −5/3 is
consistent with cluster motion via one-dimensional diffusion of gold atoms around
the edges of the nano-clusters. © 2014 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4862696]

The study of material nucleating and growing on a solid surface has a history of many decades,
ranging from the thermodynamics of liquid droplets on solids to contemporary molecular dynamics
simulations at the bio-materials interface.1–7 Deposition and growth systems are typically charac-
terised by huge ranges of time and length scale: the microscopic processes of surface growth (atomic
length scale, time scale ∼10−12 s) aggregate to produce thin films, clusters or patterns with length
scales from nm to μm over time scales of seconds or minutes.8, 9 While the microscopic processes are
not usually directly accessible to experiment, their nature can often be inferred from the statistical
properties of the grown material, for example, the island size distribution (ISD)1 or the spatial distri-
bution of islands10 and their associated capture zones.11 A particularly powerful tool in this regard
is kinetic Monte Carlo (KMC) simulation, which can efficiently bridge the time and length scale
gaps. The simplest flavour of KMC model requires that all the possible elementary processes and
their rates be defined a priori. These may be defined through detailed microscopic calculations, e.g.,
via density functional theory (DFT),12 or with the aid of a comparison of the statistical properties of
simulated and measured growth structures.13 In this work, we adopt the latter approach. We show
that large clusters (containing hundreds or thousands of atoms) are able to move on the time scale of
the growth and that this motion profoundly influences the ISD, producing a characteristic bimodal
distribution.

Experimental analysis of sub-μm growth structures is usually achieved by scanning probe
microscopy (SPM). While SPM can provide high spatial resolution and true 3D topography, there
are some disadvantages. First, SPM image acquisition is normally quite slow and it can be challenging
to build large data sets for extraction of a statistically robust ISD. Second, if the topographic steepness
of the grown structures is comparable to the sharpness of the probe tip, convolution with the tip
shape distorts the measured island sizes.14 An attractive complementary method is transmission
electron microscopy (TEM) which can combine high spatial resolution with rapid acquisition of
images. However, the growth structures must sit on an electron-transparent substrate in order to
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image by TEM. Two-dimensional (2D) materials such as graphene or chemically modified graphene
(CMG) can be used as strong and highly electron-transparent substrates.15, 16 In the particular case
of graphene and CMG, it is also important to understand the substrate interaction with films and
nano-clusters, since these hybrid systems may underpin new graphene-based technologies.17 Such
arrays of metallic nano-clusters have potential application in fields such as catalysis, plasmonics,
and sensing,18–20 for which it is important to control nanoparticle ISD and spacing. As a recent
example of a hybrid material system, a study of graphene/Al2O3/Au nano-clusters found that the Au
surface plasmon resonance could be tuned via the Al2O3 spacer thickness due to interaction with
image charges in the graphene.21 A sound understanding of both elementary growth processes and
cluster interactions on the substrate will underpin efforts to control scalable self-assembly processes
for hybrid graphene nano-materials.

Here, we describe the formation of Au nano-clusters on CMG. These are self-assembled purely
by growth in conventional sputter deposition (deposition of Au monomers). The ISDs are measured
by TEM with high statistical fidelity and have an unusual bimodal nature. This cannot be reproduced
by KMC modelling with conventional processes (irreversible aggregation of immobile clusters) and
so we introduce a size-dependent cluster mobility. This allows the ISDs to be reproduced accurately
and strongly suggests that the mechanism for cluster mobility is one-dimensional (1D) diffusion of
Au atoms around the perimeter of Au clusters.

The CMG was prepared by a modified Hummers method, resulting in mainly single-sheet
graphene oxide which was mounted on standard lacy carbon TEM grid supports.15 Gold was
deposited directly onto these CMG-on-TEM-grid substrates at room temperature in a standard metal
sputtering system. The deposition rate was fixed (0.07 nm s−1) and several coverages up to nominally
1.5 nm were deposited. Under these conditions, Au forms nano-clusters rather than continuous
films.16 The coverages θ are defined by comparison to Au-on-metal thin film growth: while absolute
values are nominal, the relative quantity of deposited Au between different coverages is accurate.
The growth is not epitaxial, with electron diffraction clearly showing the lattice planes of Au nano-
clusters oriented randomly with respect to the CMG. In larger clusters of several nm diameter, usually
several sets of lattice planes of Au could be imaged in high resolution TEM (HRTEM), indicating a
three-dimensional (3D) compact cluster shape.16 For the smallest islands, <1 nm diameter, though
still compact in plan-view, no such lattice images were observed and the overall contrast was weaker.
This indicates thinner structures and, while detailed image interpretation of such small islands is
difficult due to the mixing of diffraction and atomic number contrast in HRTEM, the observations
are consistent with a 2D morphology for such clusters.

Having deposited the Au, the grids were transferred through air and imaged using conventional
TEM (Jeol 2000FX and 2100 LaB6 microscopes operating at 200 kV). For each coverage, a series
of images (∼450 × 300 nm2, magnification 60 000×) was obtained, from which the ISDs were
extracted after thresholding using the Fiji image processing package.22 The Au clusters were stable
under these imaging conditions. However, during HRTEM imaging, where the incident electron flux
is much higher, clusters were sometimes seen to move during imaging. This observation initially
motivated our KMC investigation of cluster mobility during the growth. The ISDs are each based
on several representative images totalling at least 104 islands at each coverage. They are displayed
as continuous probability densities (Gaussian kernel estimation method) rather than as histograms
(binning method). The KMC-derived ISDs are binned and in all cases the bimodality of the ISDs
is clear and easily comparable. The ISDs are represented as the probability density distributions of
island diameter scaled to the Au(111) lattice parameter (0.288 nm). This is a simple and reliable
measure of island size since in the low coverage regime (θ < 1 nm) only a small fraction of the
observed islands have a non-compact shape. At 1.5 nm coverage, many islands are non-compact due
to coalescence of larger clusters,16 and we do not analyse this regime here.

We now describe the KMC model and its parameterization. The model is based on a simulation
grid on which islands (Au nano-clusters) and monomers (Au atoms) can diffuse and interact. The
model is constructed on a square grid scaled to the lattice spacing of Au. The Au islands are assumed
to be either circular or hemispherical and hence have nonzero area. Random deposition of Au atoms
occurs at a fixed rate. Diffusion of Au adatoms on the grid occurs through nearest neighbour hopping
such that the diffusion constant is R times that of the monolayer deposition rate. As usual in such

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://aplmaterials.aip.org/about/rights_and_permissions Downloaded to

IP:  137.205.164.107 On: Fri, 24 Jan 2014 14:55:08



012109-3 Bell et al. APL Mater. 2, 012109 (2014)

growth simulations, the parameter R strongly influences the evolution of the system: high R produces
fewer, larger islands while low R favours independent nucleation to give more numerous, smaller
islands. Adatoms which meet islands during surface diffusion aggregate irreversibly, but the islands
themselves are allowed to move according to a rule described below. When two islands touch they
are assumed to instantly form a new hemispherical island with the combined number of monomers, a
reasonable approximation given the compact cluster shapes which dominate the experimental images
in the low coverage regime of interest. To reflect TEM observations,16 we assume that islands smaller
than a critical size scrit are circular (2D), and these transition to a hemispherical island shape (3D) at
larger sizes.

The length scale and connectivity of the simulation grid are not critical provided that the grid
is sufficiently fine to properly capture the statistical properties of the real diffusion pathways. At a
given grid scale, the area covered by an island is determined by the number of atoms in the island and
the island shape. For a sufficiently fine grid, changes of grid scale at fixed real island separation can
be compensated for by changing the rate of hopping through R, keeping the diffusion constant the
same for all grid scales. The simulations were checked by altering the grid scale to match Au(111),
Au(001), or graphene lattice spacing. We confirmed that these changes of grid scale did not affect
the simulations.

The cluster mobility rule gives the probability p(s) for a cluster of size s atoms to diffuse. In
typical growth simulations, clusters of size s > 1 do not move and only monomers are mobile, though
some recent simulation work has addressed cluster mobility.23–25 In the present work, we examined
different cluster mobility rules and found the following form (Eq. (1)) allowed good reproduction
of the experimental size distributions,

p(s) =

⎧⎪⎪⎨
⎪⎪⎩

1 if s = 1

0 if 1 < s < scri t

1/sα if s ≥ scri t .

(1)

Monomers (isolated adatoms) always diffuse, whereas clusters containing more than 1 atom are
immobile and 2D, until they grow to a size scrit. Then diffusion can take place with a probability
decreasing with exponent α as the size increases, and these mobile islands are modelled as 3D
hemispheres as discussed above. Hence, the three free parameters of the simulation are: the dif-
fusion/deposition ratio R, the critical cluster size scrit, and the cluster mobility exponent α. Since
experiments were performed at fixed deposition rate and substrate temperature, R was identical for all
Au coverages for the same choice of lattice scale. Here, we set the lattice scale to the Au(111) lattice
parameter and proceed to determine the simulation parameters by comparison with experiment, as
discussed below.

Representative 180 nm sections of experimental images at two coverages (0.15 nm and 0.75 nm)
are shown in Fig. 1. The Au nano-clusters appear as dark spots on the slightly mottled light grey
background due to the CMG support. The lower right part of image (a) is expanded to show some
individual islands more clearly: even very small (<1 nm) islands are readily distinguishable due to
the high transparency of the CMG substrate. In the lower right section of panel (b) is shown the effect
of thresholding to produce the binary images used to generate ISDs. The image processing steps were
varied to check their effect on the ISD, which were negligible. Panels (c) and (d) of Fig. 1 show the
equivalent KMC simulations produced with optimized parameters. There is an excellent “by-eye”
correspondence between the KMC and TEM images, with the average island size increasing at high
coverage even though a large number of very small islands remain. In the experimental images,
island coalescence appears to be just starting by θ ≈ 0.75 nm and, even though non-compact shapes
are not allowed in the KMC model, it is clear that some islands are nearly touching and/or filling
their capture zones at this coverage (panel (d), bottom right). This indicates that the island size and
number density behaviours are approximately correct in the model.

The experimental ISDs at coverages of 0.15 nm and 0.75 nm are shown in Fig. 2. The distributions
are clearly bimodal with a significant number of very small islands alongside a broad distribution
of larger islands. The very small islands show weaker contrast and no lattice fringes in HRTEM,
consistent with a 2D morphology. The larger islands’ average size increases as the growth proceeds,
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FIG. 1. Representative sections (180 × 180 nm2, white scale bar 50 nm) from larger TEM images of Au nano-clusters
on CMG, at nominal Au coverages of (a) 0.15 nm and (b) 0.75 nm. The bottom right section of panel (a) shows a further
2× zoom of the image while in panel (b) the bottom right image section has been thresholded to produce the binary image
used in particle analysis. In panels (c) and (d) are shown KMC simulation outputs on a grid of approximately equivalent size,
where the black circles represent Au nano-clusters and the Voronoi cell about each cluster (its capture zone) is also shown.
The bottom right sections of these panels again show 2× zooms for clarity.

while the distribution of smallest islands remains centred about approximately the same diameter.
The corresponding ISDs from simulation are also given in Fig. 2. In the model, the low-size peaks of
the ISDs comprise only immobile 2D islands. The key features of the ISD evolution are reproduced
by the KMC model: the distributions are bimodal and the small-island component does not evolve
in size during growth, while the large-island component does increase in size with decreasing peak
probability density. While the simulated ISDs do not precisely match the experimental peak positions
and weights, the agreement is strikingly good.

It was impossible to simulate even the qualitative form of the experimental ISDs without
including cluster mobility. Furthermore, a rule of the kind given in Eq. (1) was essential—for
example, setting scrit = 0 or not suppressing the mobility of largest islands always failed to produce
ISDs resembling the bimodal experimental data, even when other parameters were varied. Having
decided on the cluster mobility rule, optimised simulations were produced by varying only the three
parameters R, scrit and α. Figures 3 and 4 give an indication of how this tractable parameter space
affects the simulated ISDs, concentrating on θ ≈ 0.75 nm. In Fig. 3, the diffusion/deposition ratio R
is varied by an order of magnitude either side of the optimum value (6 × 104, open diamonds). This
has a strong effect on the peak of larger islands: as R increases, these islands become bigger with a
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FIG. 2. Experimental (left) and optimised simulation (right) ISDs for Au nano-clusters on CMG at nominal Au coverages
of 0.15 nm and 0.75 nm.

FIG. 3. Simulation ISDs for Au nano-clusters on CMG at nominal Au coverage of 0.75 nm, varying the diffusion/deposition
ratio R. The optimum parameter set is shown as open diamonds to match Fig. 1.

slightly broader distribution, as expected. Note that the total density of islands varies strongly with
R, providing another means to determine its optimal value by comparison with the experimental
data (see Fig. 1). Furthermore, the small-island peaks are hardly affected by varying R (Fig. 3). The
insensitivity of the lower peak to R is very useful when finding scrit, which is strongly constrained
by the position of the small-island peak in the ISDs. When islands grow larger than scrit, they are
able to find other islands into which they merge, producing a dip in the ISD. Therefore, scrit can be
set reasonably independently of other parameters at a monomer number close to that corresponding
to diameter of the lower ISD peak. The optimum value of scrit was 10 atoms.

This leaves the cluster mobility exponent α. One would expect different values of α depending
on the dominant physical process giving rise to cluster mobility.26, 27 Six candidate mechanisms are
considered:
i. Surface evaporation and condensation of Au atoms at the upper free surfaces of the clusters;
ii. Evaporation and condensation onto the CMG substrate at the cluster edges;
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FIG. 4. Simulation ISDs for Au nano-clusters on CMG at nominal Au coverage of 0.75 nm, varying the cluster mobility
exponent α.

TABLE I. Elementary diffusion mechanisms supporting cluster mobility and their dependence on attempt frequency ν,
centre of mass (CoM) hop length a and cluster size s. Only α, the exponent of s in the diffusion constant, varies between
mechanisms, and only α = 5/3 is consistent with measured ISDs, implying 1D edge diffusion as the origin of cluster mobility.

Mechanism Number density (frequency) CoM hop length Diffusion constant

i Atop evaporation/condensation νs2/3 as−2/3 νa2s−2/3

ii Edge evaporation/condensation νs1/3 as−2/3 νa2s−1

iii 2D interface diffusion νs2/3 as−1 νa2s−4/3

iv 2D atop diffusion νs2/3 as−1 νa2s−4/3

v 1D edge diffusion νs1/3 as−1 νa2s−5/3

vi Point-like contact ν as−1 νa2s−2

iii. 2D diffusion of Au atoms at the interface between the cluster and CMG;
iv. 2D diffusion of Au atoms across the top of the gold cluster;
v. 1D diffusion of Au atoms around the edge of the Au cluster at the CMG interface;
vi. Point-like contact between cluster and substrate with diffusion of contacting atom.

In each case, the number density of migrating monomer species, the hopping length, and hence
the associated diffusion coefficient of the cluster will scale differently with cluster size s. Following
Wen et al.,26 this scaling is summarised in Table I and examples of the effects of α are shown in
Fig. 4. Only the exponent α varies between mechanisms, allowing the mechanism to be inferred (at
least from the list considered) if α can be determined by comparison of the ISDs. This is indeed
the case, with smaller values of α shifting the large-island peak to higher diameters while at the
same time broadening it and reducing its weight in comparison to the small-island peak (Fig. 4).
The strength of this effect and its contrast with the effect of R is sufficient to allow α to be identified
as 5/3 from among the candidate values. This strongly suggests that 1D diffusion of Au monomers
around the edges of the Au clusters is responsible for their mobility.

The three free parameters of the model have been determined quasi-independently. The exact
numerical value of R is not so important given that different experimental growth conditions (substrate
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temperature, growth rate) would be expected to change it; values much greater than unity are expected
for such nano-cluster growth.1 The value of α implies that 1D edge diffusion of Au is likely to cause
island mobility. This is consistent with the small size of scrit below which edge diffusion would involve
Au atoms in unfavourable low-coordination sites, and is likely related to a change of nano-cluster
morphology from flatter islands to a more 3D compact shape which enables 1D edge diffusion. While
both the abrupt onset of island mobility at scrit (Eq. (1)) and the abrupt shape change from circular
to hemispherical are clearly simplifications, the general form of the size-dependent cluster mobility
required to reproduce the experimental ISDs is robust. Further microscopic study of the smallest
clusters, both experimentally and via a fine-grained simulation approach such as DFT, should shed
more light on the atomistic behaviour associated with cluster mobility and morphology.

See the supplementary material28 for a short movie showing a run of the KMC model at
its optimum parameters, ending with a final fractional coverage corresponding to θ = 0.75 nm
(Figs. 1(b) and 1(d)). Several features of the growth are evident from observing this movie. The
largest islands are essentially immobile but smaller islands are able to migrate across a capture zone
to join a large island or merge with each other. Second, nucleation continues throughout, serving to
“top up” the number density of smallest islands. Such nucleation often occurs in larger Voronoi cells
recently expanded by an island merging event. Although the simulation does not allow non-compact
island shapes, the rate at which medium-sized or large islands merge later in the simulation, which
would give rise to the non-compact shapes beginning to appear at θ = 0.75 nm, appears qualitatively
correct as the growth proceeds. The rate of change of capture zone structure reduces throughout the
growth as more islands become immobile, but the Voronoi cell pattern does not completely stabilise
due to the continued nucleation.

In summary, we have combined TEM and KMC simulation in a study of Au nano-cluster growth
on CMG. We have measured unusual bimodal ISDs which can be explained by allowing Au nano-
clusters of sufficient size to be mobile on the CMG surface, consistent with a possible 2D-to-3D
transition in island morphology. Fitting of the statistically robust experimental ISDs to such a model
suggests strongly that the mechanism for island mobility is 1D diffusion of Au atoms around the
island base perimeter.
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