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Abstract

The Bin Packing Problem and the Cutting Stock Problem are two related classes of NP-hard combi-

natorial optimisation problems. Exact solution methods can only be used for very small instances, so for

real-world problems we have to rely on heuristic methods. In recent years, researchers have started to

apply evolutionary approaches to these problems, including Genetic Algorithms and Evolutionary Pro-

gramming. In the work presented here, we used an ant colony optimisation (ACO) approach to solve

both Bin Packing and Cutting Stock Problems. We present a pure ACO approach, as well as an ACO

approach augmented with a simple but very effective local search algorithm. It is shown that the pure

ACO approach can outperform some existing solution methods, whereas the hybrid approach can com-

pete with the best known solution methods. The local search algorithm is also run with random restarts

and shown to perform significantly worse than when combined with ACO.

1 Introduction

The Bin Packing Problem (BPP) and the Cutting Stock Problem (CSP) are two classes of well-known

NP-hard combinatorial optimisation problems (see [1] for an overview). In the BPP, the aim is to com-

bine items into bins of a certain capacity so as to minimise the total number of bins, whereas in the CSP,

the aim is to cut items from stocks of a certain length, minimising the total number of stocks. Obviously

these two problem classes are very much related, and the approach proposed in this work will be able to

tackle both of them.

Exact solution methods for the BPP and the CSP can only be used for very small problem instances.

For real-world problems, heuristic solution methods have to be used. Traditional solution methods for

the BPP include fast heuristics [1] and the reduction algorithm of Martello and Toth [2]. CSP instances

are traditionally solved with sequential heuristics or methods based on linear programming [3]. In the

ongoing search for better solution methods for both problem classes, researchers have recently shown

a lot of interest for evolutionary approaches, such as genetic algorithms [4, 5, 6, 7] and evolutionary

programming [8]. The most successful of these new approaches is Falkenauer’s hybrid grouping genetic

algorithm [4], which combines a grouping based genetic algorithm with a simple local search inspired

by Martello and Toth’s work.

In this article, we propose an Ant Colony Optimisation (ACO) approach to the BPP and the CSP.

ACO is a new meta-heuristic for combinatorial optimisation and other problems. The first ACO algo-

rithm was developed by Dorigo as his PhD thesis in 1992, and published under the name Ant System

(AS) in [9]. It was an application for the Travelling Salesman Problem (TSP), based on the path-finding

abilities of real ants. It uses a colony of artificial ants which stochastically build new solutions using a
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combination of heuristic information and an artificial pheromone trail. This pheromone trail is reinforced

according to the quality of the solutions built by the ants. AS was able to find optimal solutions for some

smaller TSP instances. After its first publication, many researchers have proposed improvements to the

original AS, and applied it successfully to a whole range of different problems (see [10] or [11] for an

overview). No one has used it for the BPP or the CSP, however, apart from a hybrid approach by Bilchev,

who uses ACO to combine genetic algorithms and a many-agent search model for the BPP (see [12].

Apart from a pure ACO approach, we also develop a hybrid ACO algorithm. This approach com-

bines the ACO meta-heuristic with a simple but effective iterated local search algorithm based on the

Dominance Criterion of Martello and Toth [2]. Each ant’s solution is improved by moving some of the

items around, and the improved solutions are used to update the pheromone trail. The reason for trying

such an approach is the knowledge that ACO and local search can work as a complementary partnership

[11]. ACO performs a rather coarse-grained search, providing good starting points for local search to

refine the results.

This article is organised as follows. Section 2 introduces the two combinatorial optimisation prob-

lems, and describes the most important existing solution methods for them. Section 3 gives a general

introduction to ACO algorithms, describing AS and some of its extensions and applications. Section 4

contains a detailed explanation of how we applied ACO to the BPP and the CSP, and how the approach

was augmented with local search. Section 5 gives the experimental results: the ACO approaches are

compared to Martello and Toth’s reduction algorithm and Falkenauer’s hybrid grouping genetic algo-

rithm for the BPP and to Liang et Al.’s evolutionary programming approach for the CSP. We also present

results using iterated local search from random initial positions, to see how much useful work the ACO

is performing. Section 6 concludes with a summary of the work and an overview of possible future work

on this subject.

2 Packing Bins and Cutting Stock

In the traditional one-dimensional BPP, a set S of items is given, each of a certain weight wi. The items

have to be packed into bins of a fixed maximum capacity C. The aim is to combine the items in such

a way that as few bins as possible are needed. In the traditional one-dimensional CSP, a set S of items,

each of a certain length li, is requested. These items have to be cut from stocks of a fixed length L.

Again the aim is to combine the items in such a way that as few stocks as possible are needed.

Both the BPP and the CSP belong to the large group of cutting and packing problems. Dyckhoff

describes a common logical structure for this group of problems [1]. There is always a set of small items

and a stock of large objects. The aim is to combine the small items into patterns and assign the patterns to

large objects. Other problems that follow this structure are for example the vehicle loading problem, the

knapsack problem, the multiprocessor scheduling problem and even the multi-period capital budgeting

problem.

When classifying the BPP and the CSP according to his typology, Dyckhoff only makes a distinction

between them based on the one criterion, namely the assortment of small items. In the BPP there are

typically many items of many different sizes, whereas in the CSP, the items are usually only of a few

different sizes (so there are many items of the same size). While this means that the difference between

the two problem types is a rather subjective and gradual one, it is still been important enough to dictate

totally different solution approaches for the two problems, as outlined in Section 1.

Bischoff and Wäscher [13] give a number of reasons why cutting and packing problems are an inter-

esting topic of research. First, there is the applicability of the research: cutting and packing problems are

encountered in many industries, such as steel, glass and paper manufacturing. Additionally, as pointed

out in [1], there are many other industrial problems that seem to be different, but have a very similar

structure, such as capital budgeting, processor scheduling and VLSI design. A second reason is the di-

versity of real-world problems: even though cutting and packing problems have a common structure,

there can be a lot of interesting differences between them. A last reason is the complexity of the prob-

lems. Most cutting and packing problems are NP-complete. This is definitely the case for the traditional

one-dimensional BPP and CSP, which are studied in this research. Exact optimal solutions can therefore

only be found for very small problem sizes. Real world problems are solved using heuristics, and the

search for better heuristic procedures stays a major research issue in this field.
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2.1 Traditional Solution Methods for the BPP

BPP instances are usually solved with fast heuristic algorithms. The best of these is first fit decreasing

(FFD). In this heuristic, the items are first placed in order of non-increasing weight. Then they are picked

up one by one and placed into the first bin that is still empty enough to hold them. If no bin is left the

item can fit in, a new bin is started. Another often used fast heuristic is best fit decreasing (BFD). The

only difference from FFD is that the items are not placed in the first bin that can hold them, but in the

best-filled bin that can hold them. This makes the algorithm slightly more complicated, but surprisingly

enough, no better. Both heuristics have a guaranteed worst case performance of 11
9 Opt + 4, in which

Opt is the number of bins in the optimal solution to the problem [14].

Apart from these fast algorithms, the BPP can also be solved with Martello and Toth’s reduction

procedure (MTP) [2]. This is slower (certainly for bigger problems), but gives excellent results. The

basis of the MTP is the notion of dominating bins: when you have two bins B1 and B2, and there is a

subset {i1, . . . , il} of B1 and a partition {P1, . . . , Pl} of B2, so that for each item ij , there is a smaller

or equal corresponding partition Pj , then B1 is said to dominate B2. This means that a solution which

contains B1 will not have more bins than a solution containing B2. The MTP tries to find bins that

dominate all other bins. When such a bin is found, the problem is reduced by removing the items of the

dominating bin. In order to avoid that the algorithm runs into exponential time, only dominating bins of

maximum three items are considered.

2.2 Traditional Solution Methods for the CSP

As described before, the difference between the BPP and the CSP only lies in the assortment of small

items: in a BPP the items are usually of many different sizes, whereas in a CSP, the items are only of a

few different sizes. This means that for a CSP, there is a structure in the demand: the same pattern of

small items can be used several times to cut stock. So it makes sense to solve the problem in two steps:

first build patterns, and then decide how many times to use each pattern. Traditional solution methods

for the CSP follow this approach.

Two types of heuristic solution methods can be distinguished: linear programming (LP) based pro-

cedures and sequential heuristics. Most of the LP-based methods are inspired by the column generation

method developed by Gilmore and Gomory in 1961 [15]. This method is based on the LP-relaxation of

the problem:

Minimise
∑

j Xj

Subject to
∑

j AijXj ≥ Ri for all i

Xj ≥ 0

(1)

Variable Xj indicates the number of times pattern j is used. Aij indicates how many times item i
appears in pattern j, and Ri is the requested number of item i. So there are i constraints indicating that

for each item the demand has to be met. When solving an LP like this, one can also find the shadow price

Ui of each constraint i. The shadow price of a constraint indicates how much the goal function could be

decreased if the right-hand side of that constraint would be relaxed by one unit. So, because constraint i
indicates the demand requirements for item i, its shadow price Ui in fact indicates how much difficulties

the algorithm has to reach the item’s demand with the patterns considered so far. This information is

then used in an integer programming model to make a new pattern (equation 2). The goal of this model

is to fill the stock length with items while maximising the total benefit this will give to the LP model

(indicated by the shadow prices Ui).

Maximise
∑

i UiAi

Subject to
∑

i LiAi ≤ L
Ai ≥ 0 Ai is an integer

(2)

In this equation, Ai indicates the number of times item i is used in the pattern, Li is the length of

item i and L is the stock length. The newly generated pattern is then again used to solve the LP-model

of equation 1. More details about this can be found in [3] and [16].

An alternative for these LP-based solution methods are the sequential heuristic procedures (SHP).

They construct a solution by making one pattern at the time until all order requirements are satisfied.
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When making a pattern, other goals than waste minimisation can be taken into account. This is an

advantage over LP approaches. There are also hybrid procedures possible, where an SHP is combined

with an LP. For more details about this, see [3].

2.3 Evolutionary Approaches

In recent years, people have tried various sorts of evolutionary approaches for the BPP and the CSP

(e.g. see [17, 5, 6, 7]. This section gives a short introduction to Falkenauer’s hybrid grouping genetic

algorithm (HGGA) for the BPP [4] and Liang et Al.’s evolutionary programming approach (EP) for the

CSP [8], because these are the algorithms the ACO approach of this project is compared to in Section 5.

Falkenauer’s HGGA uses a grouping approach to solve the BPP: the genetic algorithm (GA) works

with whole bins rather than with individual items. Crossover essentially consists of choosing a selection

of bins from the first parent and forcing the second parent to adopt these bins. Any bins in the second

parent which conflict with the adopted bins have their items displaced, and a simple local search is used

to replace them into the solution: free items are swapped with non-free items to make fuller bins which

contain few large items rather than many small items. Any remaining free items are re-inserted into

new bins using the FFD method. Mutation works in a similar way: a few random bins have their items

displaced and then re-inserted via the local search procedure.

Compared to HGGA, Liang et Al.’s EP for the CSP is a very simple algorithm. The EP uses an order-

based approach for representing the solutions, but without crossover. This is motivated by the fact that

Hinterding and Khan [5] found that the performance of an order-based GA for the CSP was degraded

when crossover was used. Mutation in Liang et al.’s EP happens by swapping elements around: every

parent produces one child by swapping three elements around twice. After the new children are formed,

the new population is selected from the whole set of parents and children. Liang et Al. formulate a

version of their algorithm for CSP’s with and without contiguity. Their program is also able to solve

multiple stock length problems. When compared to Hinterding and Khan’s grouping GA (their best

algorithm), the EP always gives comparable or better results.

3 Ant Colony Optimisation

ACO is a multi-agent meta-heuristic for combinatorial optimisation and other problems. It is inspired

by the capability of real ants to find the shortest path between their nest and a food source. The first

ACO algorithm, AS, was an application to solve the TSP, developed in 1992 by Dorigo. AS became very

popular after its publication in 1996 (see [9]). Many researchers have since developed improvements to

the original algorithm, and have applied them to a range of different problems.

3.1 Ant System

ACO algorithms were originally inspired by the ability of real ants to find the shortest path between their

nest and a food source. The key to this ability lies in the fact that ants leave a pheromone trail behind

while walking (see [10]). Other ants can smell this pheromone, and follow it. When a colony of ants is

presented with two possible paths, each ant initially chooses one randomly, resulting in 50% going over

each path. It is clear, however, that the ants using the shortest path will be back faster. So, immediately

after their return there will be more pheromone on the shortest path, influencing other ants to follow this

path. After some time, this results in the whole colony following the shortest path.

AS is a constructive meta-heuristic for the TSP based on this biological metaphor. It associates an

amount of pheromone τ(i, j) with the connection between two cities i and j. Each ant is placed on

a random start city, and builds a solution going from city to city, until it has visited all of them. The

probability that an ant k in a city i chooses to go to a city j next is given by equation 3:

pk(i, j) =







[τ(i,j)].[η(i,j)]β
∑

g∈Jk(i)
[τ(i,g)].[η(i,g)]β

if j ∈ Jk(i)

0 otherwise
(3)
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In this equation, τ(i, j) is the pheromone between i and j and η(i, j) is a simple heuristic guiding

the ant. The value of the heuristic is the inverse of the cost of the connection between i and j. So the

preference of ant k in city i for city j is partly defined by the pheromone between i and j, and partly by

the heuristic favourability of j after i. It is the parameter β which defines the relative importance of the

heuristic information as opposed to the pheromone information. Jk(i) is the set of cities that have not

yet been visited by ant k in city i.
Once all ants have built a tour, the pheromone is updated. This is done according to these equations:

τ(i, j) = ρ.τ(i, j) +
m

∑

k=1

∆τk(i, j) (4)

∆τk(i, j) =

{

1
Lk

if (i, j) ∈ tour of ant k

0 otherwise
(5)

Equation (4) consists of two parts. The left part makes the pheromone on all edges decay. The speed

of this decay is defined by ρ, the evaporation parameter. The right part increases the pheromone on all

the edges visited by ants. The amount of pheromone an ant k deposits on an edge is defined by Lk, the

length of the tour created by that ant. In this way, the increase of pheromone for an edge depends on the

number of ants that use this edge, and on the quality of the solutions found by those ants.

3.2 Extensions and other Applications

AS performed well on relatively small instances of the TSP, but could not compete with other solution

approaches on larger instances. Later, many improvements to the original AS have been proposed, which

also performed well on the bigger problems. Examples of these improvements are Ant Colony System

[18] and MAX-MIN Ant System [19]. Also, ACO solutions have been developed for many other com-

binatorial optimisation problems. Algorithms have been proposed for the quadratic assignment problem

[20, 21], scheduling problems [22, 23], the vehicle routing problem (VRP) [24], the graph colouring

problem [25], the shortest common super-sequence problem [26], the multiple knapsack problem [27],

and many others.

Nevertheless, hardly any work has been done using ACO for the BPP and the CSP. In fact, the only

publication related to this is a hybrid approach formulated by Bilchev [12]. He uses ACO to combine a

GA and a many-agent search model (MA) into one hybrid algorithm: a GA is run, and at the end of each

of its generations, the k best solutions are used to increase an artificial pheromone trail. Then this trail

is used in an ACO algorithm to build m new solutions. Finally, the MA starts from these solutions and

tries to improve them, before updating the trail again. Although Bilchev’s article is not very clear about

implementation details, the results do suggest that a model in which well-defined heuristics co-operate

can outperform any of its composing algorithms.

4 Applying ACO to the BPP and CSP

This section describes how the ACO meta-heuristic was adapted to solve the BPP and the CSP. Section

4.1 explains how the pheromone trail was defined, section 4.2 describes which heuristic was used, sec-

tion 4.3 gives details about how the ants build solutions, section 4.4 shows how the pheromone trail is

updated, and section 4.5 talks about the fitness function that was used to guide the algorithm towards

better solutions. After that, section 4.6 explains how the iterated local search was added to improve the

performance of the algorithm.

4.1 The Pheromone Trail Definition

The quality of an ACO application depends very much on the definition of the meaning of the pheromone

trail [11]. It is crucial to choose a definition conform the nature of the problem. The BPP and the CSP

are grouping problems. What you essentially want to do is split the items into groups. This is in contrast

to the TSP and most other problems ACO has been applied to. The TSP is an ordering problem: the aim
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is to put the different cities in a certain order. This is translated in the meaning of the pheromone trail

for the TSP: it encodes the favourability of visiting a certain city j after another city i.
Costa and Hertz [25] also use ACO to solve a grouping problem, namely the Graph Colouring Prob-

lem (GCP). In the GCP, a set of nodes is given, with undirected edges between them. The aim is to

colour the nodes in such a way that no nodes of the same colour are connected. So, in fact, you want to

group the nodes into colours. Costa and Hertz use a grouping based approach, in which the pheromone

trail between node i and node j encodes the favourability of having these nodes in the same colour. The

pheromone matrix is of course symmetric (τ(i, j) = τ(j, i)).
We will define our pheromone trail in a similar way to Costa and Hertz: τ(i, j) encodes the favoura-

bility of having an item of size i and size j in the same bin (or stock). There is of course one important

difference between the GCP on the one hand and the BPP and the CSP on the other: in the GCP, there is

only one node i and one node j, whereas in the BPP, and even more so in the CSP, there can be several

items of size i and size j. Intuitively, this seems to give our approach two important advantages. Firstly,

the pheromone matrix is very compact, especially for the CSP, where the number of different item sizes

is few compared to the number of actual items. Secondly, the pheromone matrix encodes good packing

patterns by reinforcing associations between sizes: once a good pattern has been found, then it can be

used repeatedly when solving the problem.

4.2 The Heuristic

Another important feature of an ACO implementation is the choice of a good heuristic, which will be

used in combination with the pheromone information to build solutions. One of the simplest and most

effective heuristic methods for solving the CSP and BPP is first-fit decreasing: the items are sorted into

order of size and then, starting with the largest, placed into the first bin that they still fit in.

However, since we will be filling the bins one by one, instead of placing the items one by one, we

have to reformulate FFD slightly. Starting with a set of empty bins, we will fill each bin in turn by

repeatedly placing the largest item from those remaining which will still fit into the bin. If no items left

are small enough to fit into the bin, a new bin is started.

This procedure results in the FFD solution, but is more useful for our purposes: it shows us that

the heuristic favourability of an item is directly related to its size. In other words, when choosing the

next item to pack into the current bin, large items should be favoured over small items. This can be

achieved by setting the heuristic function for an item being considered to be equal to its size; in other

words η(j) = j.

4.3 Building a Solution

The pheromone trail and the heuristic information defined above will now be used by the ants to build

solutions. Every ant starts with the set of all items to be placed and an empty bin. It will add the items

one by one to its bin, until none of the items left are light enough to fit in the bin. Then the bin is closed,

and a new one is started. The probability that an ant k will choose an item j as the next item for its

current bin b in the partial solution s is given by equation 6:

pk(s, b, j) =







[τb(j)].[η(j)]β
∑

g∈Jk(s,b)
[τb(g)].[η(g)]β

if j ∈ Jk(s, b)

0 otherwise
(6)

In this equation, Jk(s, b) is the set of items that qualify for inclusion in the current bin. They are the

items that are still left after partial solution s is formed, and are light enough to fit in bin b. η(j) is the

weight of item j. The pheromone value τb(j) for an item j in a bin b is given in equation 7 below. It is

the sum of all the pheromone values between item j and the items i that are already in bin b, divided by

the number of items in b. If b is empty, τb(j) is set to 1. This approach is similar to the one followed by

Costa and Hertz.

τb(j) =

{

∑

i∈b
τ(i,j)

|b| if b 6= {}
1 otherwise

(7)
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4.4 Updating the Pheromone Trail

For the updating of the pheromone trail, we mainly followed the approach of Stützle and Hoos’s MAX-

MIN Ant System (MMAS) [19]. We chose this version of the ACO algorithm because it is simple to

understand and implement, and in the same time gives very good performance.

In MMAS, only the best ant is allowed to place pheromone after each iteration. We adapted equation

4 to reflect this. The equation is further changed because of the nature of the BPP and the CSP: as

mentioned before, item sizes i and j are not unique, and they might go together several times is the bins

of the best solution. We will increase τ(i, j) for every time i and j are combined. So finally, we get

equation 8 below. In this equation, m indicates how many times i and j go together in the best solution

sbest.

τ(i, j) = ρ.τ(i, j) + m.f(sbest) (8)

Using only the best ant for updating makes the search much more aggressive. Bin combinations

which often occur in good solutions will get a lot of reinforcement. Therefore, MMAS has some extra

features to balance exploration versus exploitation. The first one of these is the choice between using

the iteration-best ant (sib) and the global-best (sgb). Using sgb results in strong exploitation, so we will

alternate it with the use of sib. We use a parameter γ to indicate the number of updates we wait before

we use sgb again.

Another way of enhancing exploration is obtained by defining an upper and lower limit (τmax and

τmin) for the pheromone values (hence the name MAX-MIN). Stützle and Hoos define the value for

the upper and lower limit algebraically. In our approach, we can’t use an upper limit. This is because,

depending on how many times item sizes appear together in the good solutions (so m in equation 8),

pheromone values get reinforced more, and they evolve to different values. We would have to use

different maximum values for different entries in the pheromone matrix.

We do use the lower limit τmin, though. Stützle and Hoos calculate the value for τmin based on pbest,
the probability of constructing the best solution found when all the pheromone values have converged to

either τmax or τmin. An ant constructs the best solution found if it adds at every point during solution

construction the item with the highest pheromone value. Starting from this, Stützle and Hoos find the

following formula for τmin (see [19] for details):

τmin =
τmax.(1 − n

√
pbest)

(avg − 1). n
√

pbest
(9)

In this equation is n the total number of items, and avg the average number of items to choose from

at every decision point when building a solution, defined as n
2 . In our approach, we used this formula,

but replaced τmax in it by 1
1−ρ

. This is in fact an approximation of τmax as calculated by Stützle and

Hoos for values for m of 0 or 1, replacing the fitness of the best solution by 1 (for most problems, the

fitness value of the optimal solution lies somewhere between between 0.95 and 1). The result is equation

10. The fact that several combinations of the same items are possible interferes quite severely with

the calculations to get to equation 9, and the value of pbest should therefore only be seen as a crude

approximation of the real probability to construct the best solution.

τmin =

1
1−ρ

.(1 − n
√

pbest)

(avg − 1). n
√

pbest
(10)

A last feature we take over from MMAS is the pheromone trail initialisation. By starting from

optimistic initial values, MMAS offers yet another way to enhance exploration. Stützle and Hoos put the

initial pheromone values τ(0) to τmax. We defined the value for τ(0) experimentally (see section 5.1).

4.5 The Fitness Function

In order to guide the algorithm towards good solutions, we need to be able to assess the quality of the

solutions. So we need a fitness function. A straightforward choice would be to take the inverse of the

number of bins. As Falkenauer [4] points out, however, this results in a very unfriendly fitness landscape.

Often there are many combinations possible with just one bin more than the optimal solution. If these
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all get the same fitness value, there is no way they can guide the algorithm towards an optimum, and the

problem becomes a needle-in-a-haystack.

So, instead, we chose to use the function proposed by Falkenauer and Delchambre in [17] to define

the fitness of a solution s:

f(s) =

∑N
i=1(Fi/C)k

N
(11)

In this equation is N the number of bins (stocks), Fi the total contents of bin i, and C the maximum

contents of a bin. k is the parameter that defines how much stress we put on the nominator of the formula

(the filling of the bins) as opposed to the denominator (the total number of bins). Setting k to 1 comes

down to using the inverse of the number of bins. By increasing k, we give a higher fitness to solutions

that contain a mix of well-filled and less well-filled bins, rather than equally filled bins. Falkenauer and

Delchambre report that a value of 2 seems to be optimal. Values of more than 2 can lead to premature

convergence, as the fitness of suboptimal solutions can come too close to the fitness of optimal solutions.

In [4] Falkenauer proves algebraically that for k-values of more than 2, a solution of N+1 bins with NF

full bins could get a fitness higher than a solution with N equally filled bins.

4.6 Adding Iterated Local Search

It is known that the performance of ACO algorithms can sometimes be greatly improved when coupled

to local search algorithms [11]. This is for example the case in applications for the TSP, the QAP and

the VRP. What normally happens is that a population of solutions is created using ACO, and then these

solutions are improved via local search. The improved solutions are then used to update the pheromone

trail, so it is in fact a form of Lamarckian search.

An explanation of the good performance of a combination of ACO with local search can be found

in the fact that these two search methods are complementary. An ACO algorithm usually performs a

rather coarse-grained search. Therefore, it is a good idea to try and improve its solutions locally. A local

search algorithm, on the other hand, searches in the surroundings of its initial solution. Finding good

initial solutions is however not an easy task. This is where ACO comes in: by generating new promising

solutions based on previously found optima, the local search can be given very good starting points.

There are not so many local search algorithms around for the BPP or the CSP. One algorithm that

seems to work fairly well was proposed in [28]. In that algorithm, an initial solution is constructed

using the BFD heuristic. Then each bin of the current solution is destroyed successively, and its contents

are spread over the other bins. If this leads to a feasible solution (with no overflowing bins), we have

obtained a solution with one bin less. If the spreading of the items leads to an infeasible solution, a local

search is applied: pairs of bins are investigated and its items are redistributed among themselves. If this

leads to a feasible solution, a new solution improvement phase is finished.

As Alvim et Al. report, this local search algorithm gives good results. However, for combination with

an ACO algorithm, a reasonably fast and simple procedure was needed. Therefore, a local search pro-

cedure based on the local optimisation algorithm used in Falkenauer’s HGGA (see section 2.3) seemed

to be a better choice (although it would be very interesting to see how an ACO combined with Alvim et

Al.’s approach would perform).

In the HGGA version of the local search algorithm, a number of items of the initial solution are made

free. The algorithm then tries to replace up to three items in each of the existing bins of the solution by

one or two of the free items, in such a way that the total content of the bin is increased without exceeding

the maximum capacity. After all bins have been examined, the remaining free items are added to the

solution using the FFD heuristic. This search is inspired by Martello and Toth’s dominance criterion

(see section 2.1), which essentially states that well-filled bins with large items are always preferable

over less-filled bins with smaller items. In HGGA, the algorithm searches locally for dominant bins, by

replacing items in the bins by larger free items. In the same time, the free items are replaced by smaller

items from the bins, which makes it easier to place them back into the solution afterwards.

In the hybrid version of the ACO algorithm, every solution created by an ant is taken through a local

optimisation phase. In this phase, the n least filled bins are destroyed, and their items become free (the

number of bins to be destroyed is defined empirically, see section 5). Then, for every remaining bin, it
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The solution before local search (the bin capacity is 10):

The bins: | 3 3 3 | 6 2 1 | 5 2 | 4 3 | 7 2 | 5 4 |

Open the two smallest bins:

Remaining: | 3 3 3 | 6 2 1 | 7 2 | 5 4 |
Free items: 5, 4, 3, 2

Try to replace 2 current items by 2 free items, 2 current by 1 free or 1 current by 1 free:

First bin: 3 3 3 → 3 5 2 new free: 4, 3, 3, 3

Second bin: 6 2 1 → 6 4 new free: 3, 3, 3, 2, 1

Third bin: 7 2 → 7 3 new free: 3, 3, 2, 2, 1

Fourth bin: 5 4 stays the same

Reinsert the free items using FFD:

Fourth bin: 5 4 → 5 4 1

Make new bin: 3 3 2 2

Final solution: | 3 5 2 | 6 4 | 7 3 | 5 4 1 | 3 3 2 2 |

Repeat the procedure: no further improvement possible

Figure 1: An example of the use of the local search algorithm

is investigated whether some of its current items can be replaced by free items so that the bin becomes

fuller. The algorithm successively tries to replace two current items by two free items, two current items

by one free item, and one current item by one free item. In the end, the remaining free items are re-

inserted into the solution using the FFD heuristic, to create a complete new solution. The complete local

search procedure is then repeated with this new solution: the n least filled bins are emptied and their

items redistributed. This procedure is iterated until no improvement in fitness is detected between the

solutions before and after the local search is applied. Hence, the local search is in fact a hill-climbing

algorithm which takes the original solution created by the ACO procedure to the nearest local optimum.

A complete example of the local search phase is given in Figure 1. The pheromone then is updated

using the locally improved solutions.

5 Experimental Results

This section describes the results of our experiments. First the different parameter values are defined,

and then the pure ACO algorithm is compared to Liang et Al.’s Evolutionary Programming approach [8],

Martello and Toth’s Reduction Algorithm [2], and Falkenauer’s HGGA [4]. We then present the results

for the hybrid ACO approach with iterated local search on the same problems. Finally, we show the

results for the local search procedure alone, using random restarts rather than ACO to create the initial

solutions.

5.1 Defining Parameter Values

This section describes how parameter values were defined for the pure ACO algorithm and the ACO

algorithm enhanced with local search. In our tests to define parameter values, we used test problems of

different sizes and structures taken from the BISON test set [29] in order to find values which give good
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performance across a broad range of different problem classes.

5.1.1 The Pure ACO Algorithm

The first parameter to define was nants. To choose its value, we ran tests with a fixed number of solution

constructions, but different number of ants. Apparently, a number of ants equal to the number of items

in the problem gave the best results for all problems.

The next parameter, β, is the one that defines the relative importance of the heuristic information as

opposed to the pheromone information. From our findings, this parameter appeared to be crucial. Using

the wrong value for it resulted inevitably in bad results. However, we could not find a link between any

features of the problem instance and the best value for beta. Fortunately, the good beta values for the

different problems were all situated between 2 and 10, and in practice, the choice could be narrowed

down to one of 2, 5 or 10. This means, though, that for every new problem these three values have to be

tried out.

For the parameter k, which defines the fitness function, the results of Falkenauer [4] and Falkenauer

and Delchambre [17] could be confirmed. A value of 2 was definitely better than 1. Higher values gave

slightly worse results.

The parameters ρ, the pheromone evaporation, and γ, defining when updates have to be done with

sgb rather than sib, appeared to be interdependent. When examined separately, they both depended on

the problem size. Once γ was set to ⌈ 500
n
⌉ (with n being the number of items in the problem), ρ had one

optimal value for every problem: 0.95.

The optimal value for pbest, which defines τmin, appeared to be 0.05, although a really broad range

of values could be used, and the tests were not very conclusive. Also for τ(0), the initial pheromone

value, a broad range of values gave good results, although setting τ(0) to τmin (and giving up on opti-

mistic initial values) gave clearly worse results. We chose to set it to 1
1−ρ

, which is an approximation of

τmax as defined by Stützle and Hoos.

5.1.2 The Hybrid ACO Algorithm with Local Search

When the ACO is combined with local search, new parameter settings are needed. In this section, the

parameters nants, β, ρ, γ, pbest and τ(0) are redefined. The parameter k is kept on 2. One new

parameter is introduced: bins indicates the number of bins that are opened to release the free items for

the local search.

To define nants, the same kind of test as before was done: vary the number of ants, while the total

number of solution constructions stays fixed. Like for the pure ACO algorithm, a rather wide range of

values gave good solutions. The best values for nants were lower, however, and less dependent on the

problem size. It was possible to set the value of nants to 10 for all problems. The fact that less ants are

needed per iteration can be explained as follows. If no local search is used, interesting spots are only

found when ants specifically build those solutions. With local search, however, every solution is taken to

a near-by optimum in the solution space. Therefore, less ants are needed to get an equally good sampling

of interesting solutions.

When investigating the β parameter in the algorithm with local search, it turned out that using an

optimal β value became less important, and that most problems could in fact do with a value of 2. This

was to be expected: as is explained in [11], local search uses the heuristic information in a more direct

way to improve solutions, and the importance of the heuristic information for the building of solutions

diminishes. There were still some very large problem instances that needed a β value of 1, but this

change of value seems to be well correlated with the problem size for the hybrid ACO algorithm.

The fact explained above that local search focuses the investigation directly on the interesting spots

of the solution space also means that less exploration is necessary. This was confirmed when the optimal

values for γ and ρ were defined. For γ, the optimum appeared to be 1 for any problem size, meaning that

all the updates are done with the globally best solution sgb. So there is less exploration. For ρ, the test

results were very unclear. For most problems, any value between 0.1 and 0.9 gave good results. A very

low ρ value means that the pheromone only lasts for one generation, so new solutions are only guided by

the previous optimum. This results in a very aggressive search, and for some rather difficult problems,

the optimum was found incredibly fast. It did, however, also cause the algorithm to get stuck in local
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optima from time to time. In the end, we settled for a ρ of 0.75. This gave rise to longer runs (around

30 iteration for the problems mentioned above), but was less unstable in terms of convergence into local

optima.

Also, for pbest and τ(0), less exploration was needed. For different values of pbest, the results in

number of bins stayed the same, but less cycles were needed for higher values. The best results were in

fact obtained with pbest set to 1. This means that τmin is set to 0: the lower limit on pheromone values is

abandoned. Also for different values τ(0), the results hardly differed in number of bins or cycles needed.

Therefore we decided to give up on the exploratory starts and set τ(0) to 0. This meant that the initial

solutions were in fact created by a random form of FFD: the first item in each bin is chosen randomly

with bias towards larger items (as controlled by β) and the remaining items in the bin are chosen from

those left using standard FFD.

Finally, also the new parameter bins, the number of bins to be opened, had to be defined. This was

quite difficult, as it depended very much on the problem instance at hand. Fortunately, for most problems

the algorithm gave optimal results for quite a wide range of values for bins, and we found that a value

of 4 was acceptable for all problems under consideration.

5.2 Comparing the Pure ACO to other Approaches

We compared our pure ACO approach for the CSP to Liang et Al.’s Evolutionary Programming approach

(EP), and for the BPP to Martello and Toth’s Reduction Algorithm and Falkenauer’s HGGA. All tests

were run on Sun Microsystems Blade 100 machines with 502 MHz UltraSPARC-IIe processors. The

algorithm was implemented in Java and run under Java version 1.3.

5.2.1 Tests for the CSP

Liang et Al. include in their paper [8] their 20 test problems. We use their five largest single stock length

problems (problems 6a to 10a) to compare our approach to theirs. They have a version of their program

with and without contiguity. A CSP with contiguity is one where, apart from minimising the number of

stocks, you also want as few outstanding orders as possible. Concretely, this means that once you have

started cutting items of a certain length, you want to finish all the items of that length as soon as possible.

Liang et Al’s EP with contiguity gives the best results in number of stocks, so that will be the one we

compare to.

Like Liang et Al., we did 50 independent test runs for each problem. The results are summarised in

Table 1. ’ACO’ gives the results obtained with our pure ACO approach, ’EP’ gives Liang et Al.’s results.

’avg’ indicates how many stocks were used on average, ’best’ indicates the number of stocks in the best

solution found, and ’time’ indicates the average running time in CPU seconds.

Prob EP ACO

avg best time avg best time

6a 80.8 80 347 79.0 79 166

7a 69.0 68 351 69.0 68 351

8a 148.1 147 713 146.0 145 714

9a 152.4 152 1679 151.0 151 1652

10a 220.3 219 4921 218.9 218 4925

Table 1: Pure ACO Results for Cutting Stock Problems

Liang et Al. use a population size of 75 and a fixed number of generations for each problem. In

order to compare the two approaches, we considered letting the ant algorithm build the same number

of solutions as EP. However, this would have been an unfair comparison: ACO is much slower than

EP at creating a single new solution, since ACO has to make the whole solution from scratch, rather

than applying a fast mutation procedure to an already existing solution. Therefore, in order to get some

comparison between the two approaches, let our ant algorithm run for the same amount of time as EP
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on each of the 10 problems. As mentioned before, the parameter β is really crucial in our algorithm.

Therefore, we had to do a few preliminary test runs for every problem to choose a good β value, which

is clearly a problem for our approach.

It is clear that the ACO algorithm is at least comparable to EP from these results: it finds better

solutions for 4 of the 5 problems and has the same behaviour as EP on the remaining problem (7a). The

lower CPU time on Problem 6a is explained by the fact that the ACO procedure terminates when it finds

a solution with the theoretical optimum number of stocks (which for problem 6a is 79).

5.2.2 Tests for the BPP

In [4], Falkenauer compares his HGGA to Martello and Toth’s Reduction Algorithm (MT). He uses

80 different uniformly generated test problems with a bin capacity of 150 and item sizes uniformly

distributed between 20 and 100. He uses four different problem sizes: 120 items, 250, 500 and 1000.

For each size, 20 different problems were created randomly.

Following Falkenauer, we ran our ACO algorithm once on each instance of every problem set. To

get some comparison between our results and Falkenauer’s, we allowed the pure ACO procedure to run

for a fixed number of iterations for each set of 20 problems, such that the average time used was of the

same order as the average time used by HGGA and the Martello and Toth procedure (as reported by

Falkenauer).

We performed all the test runs for β values of 2, 5 and 10. For the smaller problems (120 items), the

value for β did not really matter, but for the larger ones, it made a big difference. In the table below, we

only report the results for the best β value. The results are summarised per problem set in Table 2. ’u120’

to ’u1000’ are the uniform problem sets. ’bins’ indicates how far in total the solutions were above the

theoretical optimum across the 20 problems in each set. ‘time’ gives the average running time in CPU

seconds.

Prob HGGA MTP ACO

bins time bins time bins time

u120 +2 381 +2 370 +2 376

u250 +3 1337 +12 1516 +12 1414

u500 0 1015 +44 1535 +42 1487

u1000 0 7059 +78 9393 +70 9272

Table 2: Pure ACO Results for Uniform Bin Packing Problems

From these results, it is clear that the pure ACO algorithm is comparable to MTP but cannot beat

Falkenauer’s HGGA. For the small problems (size 120) it does equally well, but for the largest (size 500

and 1000), it is always sub-optimal, with an average absolute deviation from optimality of 2.1 bins for

the u500 problems and 3.5 bins for the u1000 problems. This demonstrates the power of the local search

procedure in HGGA and motivated us to add a similar local search to our ACO procedure.

5.3 Comparing the Hybrid ACO to other Approaches

We compared our hybrid ACO approach with the iterated local search procedure added with EP, MTP

and HGGA using the same problems as were used in the previous section.

5.3.1 Tests for the CSP

We ran the hybrid ACO procedure on the same five cutting stock problems as before, as shown in Table 3.

As before, we did 50 independent runs for each problem. For the hybrid algorithm we found that good

results could be obtained within 20,000 evaluations, so we used this as the upper bound on the number

of solutions the ACO procedure was allowed to build. For the tests of the pure ACO algorithm, typically

100,000 evaluations or more were used. The β parameter was set to 2 for all five problems.
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Prob EP HACO

avg best time avg best time

6a 80.8 80 347 79.0 79 1

7a 69.0 68 351 68.0 68 1

8a 148.1 147 713 143.0 143 5

9a 152.4 152 1679 149.0 149 10

10a 220.3 219 4921 215.0 215 249

Table 3: Hybrid ACO Results for Cutting Stock Problems

Hybrid ACO clearly has very strong performance on these five problems: all five are reliably solved

to the theoretical optimum well within the 20,000 evaluations allowed.

5.3.2 Tests for the BPP

We ran the hybrid ACO procedure on the same 80 bin packing problems as before, as shown in Table 4.

We also generated 60 larger instances to give the ACO procedure a further test: these are generated in the

same way as Falkenauer’s uniform instances, but contain more items. We generated problems containing

2000, 4000 and 8000 items, with 20 random instances of each. As before, we did a single run of each

problem. As with the CSP tests, we used 20,000 as the upper bound on the number of solutions the

ACO procedure was allowed to build. The β parameter was set to 2 for the u120, u250, u500 and u1000

problem sets; for the all the larger problem sets, a β value of 1 was found to give better performance.

Prob HGGA MTP HACO

bins time bins time bins time

u120 +2 381 +2 370 0 1

u250 +3 1337 +12 1516 +2 52

u500 0 1015 +44 1535 0 50

u1000 0 7059 +78 9393 0 147

u2000 – – – – 0 531

u4000 – – – – 0 7190

u8000 – – – – 0 43746

Table 4: Hybrid ACO Results for Uniform Bin Packing Problems

The hybrid ACO procedure also does well on these problems: 138 of the 140 problems are solved to

the theoretical optimum, including three of the problems that were not solved by HGGA and all of the

new larger instances. Of the remaining two problems, one (u250 13) is actually insoluble at the lower

bound [30] and the remaining instance (u250 12) can be solved by the hybrid ACO procedure given a

larger number of evaluations and about 2 hours of CPU time.

In looking at individual results, we noticed that the instances which gave the hybrid ACO procedure

the most difficulty were those which had the least spare capacity in the optimal solution, such as u250 12

(spare capacity = 11), u500 07 (spare capacity = 3), u2000 12 (spare capacity = 13) and u4000 06 (spare

capacity = 5). It may well be that for these problems a less aggressive strategy is required for both the

ACO and for the local search procedure.

5.4 Memoryless Experiments

Adding the iterated local search procedure to the ACO gives a clear increase in performance, with many

previously hard problems now being solved in seconds. It is therefore reasonable to ask what contribution

the ACO procedure is actually making to solve the problems, and whether similar results might be
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obtained by applying the local search procedure repeatedly to random points in the search space until a

good solution is found.

We therefore repeated the experiments from the previous section, but this time with the pheromone

matrix update procedure disabled. This meant that the initial matrix entries were left undisturbed

throughout the run. The results of these runs are shown in Table 5 for the cutting stock problems and

Table 6 for the bin packing problems (up to size 4000).

Prob HACO No memory

avg best time avg best time

6a 79.0 79 1 79.0 79 24

7a 68.0 68 1 68.0 68 1

8a 143.0 143 5 144.0 144 1064

9a 149.0 149 10 150.0 150 997

10a 215.0 215 249 216.8 216 1707

Table 5: Memoryless Results for Cutting Stock Problems

Prob HACO No memory

bins time bins time

u120 0 1 0 1

u250 +2 52 +6 166

u500 0 50 +5 432

u1000 0 147 +10 1850

u2000 0 531 +43 19286

u4000 0 7190 +118 131137

Table 6: Memoryless Results for Uniform Bin Packing Problems

It is clear from these results that the local search procedure can solve small problems but needs the

ACO procedure when larger problems are encountered. The memoryless procedure fails to find the

optimum for the three largest cutting stock problems and for many of the larger bin packing problems

(including all of the u2000 and u4000 instances).

The results shown here are from biased initial points: the initial τ(i, j) entries were set to 0 and β
was set to the same values as before. This generates solutions in which the first item in each bin is chosen

with a probability proportional to η(j)β and all subsequent items are chosen to be the largest which will

still fit in the bin. This results in FFD-like solutions, albeit with some random variation given by the

probabilistic choice of the first item for each bin. We also tried setting the initial τ(i, j) entries to 1 and

β to zero, to give the local search entirely random starting points; however, the results generated were

worse than those shown in Tables 5 and 6.

6 Conclusions and Further Work

This paper has presented an ACO approach for the bin packing problem and the cutting stock problem.

Artificial ants stochastically build new solutions, using a combination of heuristic information and an ar-

tificial pheromone trail. The entries in the pheromone trail matrix encode the favourability of having two

items in the same bin, and are reinforced by good solutions. The relative importance of the pheromone

trail information as opposed to the heuristic information is defined by the parameter β, and is crucial for

good performance of the pure ACO algorithm.

We also present a hybrid approach, which combines ACO with iterated local search. The solutions

constructed by the ants are taken to a local optimum by a search based on Martello and Toth’s dominance
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criterion. This extended algorithm managed to solve all but one of the benchmark problems under

consideration in reasonable time, and was capable of solving the last given an extended run.

When compared to existing evolutionary approaches, the pure ACO algorithm was comparable with

Liang et Al.’s EP solution for the CSP and Martello and Toth’s MTP for the BPP. The pure ACO algo-

rithm failed to compete with Falkenauer’s HGGA. The hybridised ACO algorithm was much faster and

could outperform EP, MTP and HGGA on the problems under consideration.

We are currently testing the hybrid ACO algorithm on a wider variety of test problems, including

the full BISON test set [29]. We are also trying to make our ACO approach adaptive, in order to let

the algorithm choose the appropriate value for β to suit the problem in hand. The way we propose to

do this is by letting each ant have a different value of β initially, observing which ants create better

solutions, and then allowing the β values for all the ants to move towards the values held by the more

successful ants. The same approach may also be appropriate for other parameters, such as the number of

bins opened in the local search.

The ACO approach to the bin packing and cutting stock problems presented here is quite generic,

and is based on the idea of reinforcement of good groups through binary couplings of item sizes. The

approach used should be capable of being adapted to solve similar grouping problems, such as the re-

stricted bin packing problem (where some pairs of items cannot be placed in the same bin), the cutting

stock problem with multiple stock sizes, the multiprocessor scheduling problem, and simple timetabling

problems. We are currently adapting the algorithm presented here to solve some of these problems.
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[23] Thomas Stützle. An ant approach to the flow shop problem. In Proceedings of the 6th European

Congress on Intelligent Techniques and Soft Computing, pages 1560–1564, Aachen, Germany,

1998. Verlag Mainz.

[24] L. M. Gambardella, E. D. Taillard, and G. Agazzi. MACS-VRPTW: A multiple ant colony system

for vehicle routing problems with time windows. In D. Corne, M. Dorigo, and F. Glover, editors,

New Ideas in Optimization, pages 63–76, London, UK, 1999. McGraw Hill.

[25] D. Costa and A. Hertz. Ants can colour graphs. Journal of the Operational Research Society,

48:295–305, 1997.

[26] R. Michel and M. Middendorf. An ACO algorithm for the shortest supersequence problem. In

D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 51–61, London,

UK, 1999. McGraw Hill.

[27] G. Leguizamon and Z. Michalewicz. A new version of ant system for subset problems. In Pro-

ceedings of the 1999 Congress of Evolutionary Computation, pages 1459–1464, Piscataway, NJ,

USA, 1999. IEEE Press.

[28] Adriana C. F. Alvim, Fred S. Glover, Celso C. Ribeiro, and Dario J. Aloise. Local search for the

bin packing problem, 1999. Available from http://citeseer.nj.nec.com/alvim99local.html.

[29] Armin Scholl, Robert Klein, and Christian Jürgens. BISON: a fast procedure for exactly solving

the one-dimensional bin packing problem. Computers and Operations Research, 24(7):627–645,

1997. Test problems available from http://www.bwl.tu-darmstadt.de/bwl3/forsch/projekte/binpp.

[30] Ian P. Gent. Heuristic solution of open bin packing problems. Journal of Heuristics, 3(4):299–304,

1997.

16




