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ABSTRACT 

 
This research work describes an intelligent and modular architecture for 

controlling the milling process. For this purpose, it is taking into account the 

admissible input cutting parameters given by the stability lobes and restrictions of 

the system, calculating the quasi-optimal cutting parameters. The quasi-optimal 

cutting parameters are obtained considering a cost function with multi-objective 

purpose. Furthermore, parallel multi-estimation adaptive control architecture is 

proposed in order to allow adaptation of the system when the cutting parameters are 

changed, for example, due to production requirements. It incorporates an intelligent 

supervisory system to address the problem of choosing the most adequate control 

signal at each required time. The fundamental idea of the control system is to work 

automatically, with a simple interface with the operator, based around the 

admissible cutting parameter space given by the well-known stability lobes. 
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1. INTRODUCTION 
 

Dynamic complexity of milling processes combined with their exigent performance 

requirements requires sophisticated and complex control systems. The selection of adequate 

cutting parameters for multi-objective optimization in milling processes has been the subject 

of extensive research in manufacturing literature [1-3], where computer aided programming 

planning, decision support systems and bio-inspired systems have been used to cope with the 

problem of multi-objective optimization. Moreover, the control of milling forces has been 

applied successfully in a broad range of milling applications [4-6]. 

This paper presents an intelligent and modular architecture for controlling the milling 

process. It is intelligent because finds out parameters of the system. Moreover, it has the 

ability to learn from previous experience. Its modularity is based on the idea that the control 

represents one external module which can be implemented in the system. It is based on models 

of the milling process. The dynamic equation leads to the time-domain and the well-known 

stability plots and the linearization around the equilibrium points is represented by transfer 

functions.  

Then, taking into account the admissible input cutting parameters given by the stability 

lobes and restrictions of the system, the quasi-optimal cutting parameters are calculated. The 

quasi-optimal cutting parameters are obtained while taking into account a cost function with a 
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multi-objective purpose. In this way, the quasi-optimal cutting parameters can be found 

automatically based on the multi-criteria of maximising material remove rate and tool life 

while minimising the surface roughness and maintaining a robust, stable working point. This 

first toolbox of the modular architecture is designed so the operator can interact with it in a 

simple and efficient manner, leading to schedule programmed cutting parameters in 

production. 

Furthermore, parallel multi-estimation adaptive control architecture is proposed in order 

to allow adaptation of the system when the cutting parameters are changed, for example, due 

to variability in production requirements.  It deals with non-linearity, cutting parameter and 

material dependent milling process factors. Each estimator of the parallel scheme incorporates 

a recursive least square estimator and produces a control law at the same sampling instant.  

The parameters of each transfer function, such as the dynamics and the parameters of the 

cutting process can vary at each working point and in the transitions between working points. 

To address this problem, an intelligent supervisory system is presented which selects adequate 

trajectories in the state space according to design requirements. Furthermore, it is able to learn 

trajectories and compare them based on a cost function from previous states to generate a 

knowledge based. This supervisory system closes the control loop.  A simulation example is 

provided to explain how the system acts giving an intuitive understanding of the problem.  

 

2. SYSTEM DESCRIPTION 
 

Milling processes are well characterized as mechanical systems that are particularly 

sensitive to acquiring vibrations. In this section, the milling process is modelled as a second 

order differential equation, which is excited by forces whose inherent terms describe 

excitation of the modal parameters of the system. This fact results in the conversion of 

resultant energy into vibrations of the system. Those vibrations are generated under certain 

cutting conditions depending on the process being carried out, clamping of the workpiece, tool 

and workpiece materials, etc. 

 

2.1. Self-excited vibrations 

 

The standard milling system can be described as a second order differential equation 

excited by the cutting forces,  

       M r t B r t C r t F t
 

                (1) 

where       ,
T

r t x t y t  are the relative displacements between the tool and the 

workpiece in the X Y  plane,       ,
T

x yF t F t F t , and  ,M B  and C  are the modal 

mass, damping and stiffness matrices respectively, all of them represented in two dimensions. 

The milling cutting force is represented by a tangential force proportional to the instantaneous 

chip thickness, and a radial force which is expressed in terms of the tangential force [6], 

   t t dc cF t K a t t    and    r r tF t K F t          (2) 

where tK  and rK , the tangential and radial specific cutting constants which are 

dependent on the tool material for any specific geometry, dca , the axial depth of cut and,  ct t

, the chip thickness, obtaining the cutting forces in Cartesian coordinates. The most critical 

variable in the equation of motion, the chip thickness,  ct t , consists of a static part and a 

dynamic one. The static part is proportional to the feed rate and it is attributed to the rigid 
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body motion of the cutter. The dynamic part models two subsequent passes of the tool through 

the same part of the work-piece. The phase shift between two consecutive passes of a tool 

tooth on the work-piece is widely modelled and represented [6] by, 

         sin sin cosc r j j jt t f x t x t y t y t                                  (3) 

where rf  is the feedrate, j  the immersion angle and   is a delayed term defined as

60

t sN S
    ,  tN   is the number of teeth and  sS  the spindle speed in  rpm . Figure 1 pictures 

this mathematical representation in a drawing.  
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Figure 1: Cross-sectional view of a milling tool [4]. 

2.2. Machine tool transfer function 

 

The transfer function of the system, in chatter and resonant free zones, can be separated 

as a series decomposition of the transfer function that relates the actual feed delivered by the 

drive motor and the resultant force due to the deflection of the tool and, the transfer function 

that represents the computerized numerical control (CNC). Then,  a continuous transfer 

function which relates both signals, measured resultant force and the actual feed delivered by 

the drive motor can be shown as a first order dynamic [4],  

 
 

 

 , , 1

1

p c dc st ex t
p

a t s c

F s K a r N
G s

f s N S s

 


 


         (4) 

where  2
cK N mm  is the resultant cutting pressure constant,  dca mm is the axial 

depth of cut,  , ,st ex tr N   is a non-dimensional immersion function, which is dependent on 

the immersion angle and the number of teeth in cut, tN   is the number of teeth in the milling 

cutter,  sS rpm the spindle speed and 1
c

t sN S
   . At the same time, the relationship between 

the machine tool controls, the CNC and, the motor drive system can be approximated as a first 
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order system within the range of working frequencies [4]. This transfer function relates the 

actual, af , and the command,  cf  , feed velocities,  

 
 

 
1

1

a
s

c s

f s
G s

f s s
 


            (5) 

where s  represents an average time constant. 

The combined transfer function of the system is given by, 

 
 

    1 1

p p

c
c c s

F s K
G s

f s s s 
 

 
                   (6)  

with   c dc dc
p

t s

K a rkN sK
mm N S

    

 

3. COST FUNCTION FOR SELECTION OF OPTIMAL 

CUTTING PARAMETERS  
 

A novel cost function has been conceived to allow an inference engine to carry out the 

selection of suitable cutting parameters. The tool cost model for a single milling process can 

be calculated using the following equation,  

   3 3
1 1 2 21,..,3

, , ; ,
i i

c NF
J TOL MRR SURF R c c NF TOL c NF MRR

SURF


         (7) 

The cost function has three terms. Each term is composed of a weighting factor  ic , a 

normalisation factor  iNF and the function that defines the process efficiency. These 

functions are: the life of the tool, TOL ; the material remove rate, MRR ; and the desired 

surface finish, SURF . The tool cost function is designed to be directly proportional to the life 

of the tool and material remove rate and inversely proportional to surface roughness. Hence, 

optimal solutions will maximise TOL  and MRR  while minimising SURF . These parameters 

play an important role when selecting cutting parameters since they are usually used as 

benchmark indices in industries to measure the performance of the system.  

The authors describe in [7] the definition of the parameters and the algorithm that 

automatically manages the selection of adequate cutting parameters. Nine parameters that 

compose the cost function and two algorithmic methodologies to manage the weighting 

factors of the cost function are required, depending on production requirements. The paper 

also discusses restrictions which limit the milling process and some expert skills are included 

in order to solve the optimization process, giving a complete procedure to obtain quasi-

optimal cutting parameters. These definitions are applied in the example application described 

in section 4 in this paper.  

The cost function calculates cutting parameters depending on process requirements. The 

below explained model reference adaptive control scheme is able to keep the forces below a 

prescribed upper bound in spite of sudden changes on cutting parameters, spindle speed and 

depth of cuts, pre-programmed by the optimization algorithm. 

 

 

4. MODEL REFERENCE ADAPTIVE CONTROL SCHEME 
 

The objective of this section is to provide a control scheme which improves the 

transitory behaviour of the system and the transitions in between optimal working points 
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through an intelligent plan. For this purpose, the trajectory between optimal cutting parameters 

in the state space parameter is selected.  

 

4.1. State space trajectories generation 

 

Consider  , , ,, ,a s a dc a c aq S a f  and  , , ,, ,b s b dc b c bq S a f  the points which optimise J

(equation 7) and it is required transition between. Consider the transfer functions a
a

Na
G

D
  

and b
b

b

N
G

D
  which describe the behaviour of the system in those points. The transfer 

function which describes the system at equilibrium points between aq  and bq  can be 

described as: 

 
 

 

   

     

(1 )

1

a b

a b

N s N s N s
G s

D s D s D s






 

 

 
 

 
             (8) 

for any  0,1   which is dependent on the equilibrium point. This parameterization 

allows moving around the state space; just adjusting the parameter ,   provides the system 

with the capacity to improve transitory states and enhance transitions in between optimal 

working points travelling through different states in the state space.  

The transfer function around each equilibrium point can be defined by an  -value in 

equation 8. The trajectory of the system passes through the different operational points when 

the system changes from one to other optimal cutting parameters due to process requirements.  

Then, the linear model with the best approximation to the behaviour of the system at each 

instant will vary during the switching process. This motivates the idea of considering different 

linear models of the system, each one associated with one different possible working point in 

between two optimal cutting parameters of the system to be switched, i.e., with a different 

value of in equation 8. Furthermore, the objective of the discrete controller is to follow the 

prefixed dynamics of a reference model. For this reason, it is considered as a discretization for 

each linear model to design the controller. In this sense, it is defined a set of possible values of 

  as
      1 2

, ,..,
n

S 

    , with 
   0,1
i

   for1 i n  . Then, the multi-model scheme 

is composed from different discretization for each working point. The set of discrete transfer 

functions can be written as. 

             
 

 

 

 

'

i i

i B z k B z
H z H z Z h s G s

A z A z

  

 
 


     
 

            (9) 

for 1 i n  . The different models are used to parameterize the set of controllers which 

generate the possible control signals. Each discrete control signal is reconstructed   through a 

zero order hold  ZOH . Then, the effect of the continuous system over the milling system is 

simulated, obtaining a set of outputs defined as 
   i
pF t  for1 i n  . Those signals are 

compared with the reference continuous output,  pmF t , to obtain a following error, 
   i

e t , 

associated with each discrete linear model.  Figure 2 shows the control scheme for the full set 

of  -values.  In this figure, there are n  blocks, each one consists of basic controllers 

explained below.   
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Figure 2: Proposed control scheme. 

 

4.2. Performance index  

 

The supervisory controller evaluates a performance index based on the following error 

associated to each possible discrete time model. The used index has the following form:  

         

         

, ,

1

,

1
1

'

1

s

s

s

s

k
i j lT i jk l

pm pk l T
l k M

k M
lT i jl k

pm pl T
l k

J F F d

F F d

    

    




 





 

  

  

 

 

         (10) 

for 1 i n  , where (0,1]  and 0M   are real parameters of the design.   is a 

“forgetting factor” that gives more importance to the last sampling instants.  pmF t  denotes 

the reference continuous output to be followed and 
   i
pF t is the output obtained from 

simulating the effect of the controller associated with the non-linear milling system.  

 

4.3. On-line updating of the   gain  

 

When the supervision system chooses switching from the active controller, which is 

associated to the gain of the linear model old  , to another controller associated to the gain of 

the linear model new  , this switching does not carry out instantaneously. The transition from 

one   -value to another is implemented over a predetermined number of samples. At the 

same time, the controller is selected associated to the gain of the linear model
act
k , with 

,act
k old new     if old new   or ,act

k new old     if old new   , at each sampling time 
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k st kT  in the switching process. For this reason, 
act
k  could not be one of the possible 

values of S and they can take any value in the interval  0,1 .  

The following algorithm describes the switching mechanism and, in particular, the 

method of updating the value of the gain 
act
k  which determines the value, , of the active 

discrete model used to parameterize the applied controller. 

if rk jN , then 

 mini
new   with  '

min
1

arg : ' mini i
k k

i n
i i J J

 

 
  

 
 

act
old k   

end if 

  
  1

min / ,

max / ,

act
k new old new new oldact

k act
k new old new new old

N if

N if





     


     


   
 

  

 

where N  is the number of samples over which the scheme updates the value of 
act
k  

from old  to new  .  

 

4.4. Basic controller 

 

Finally, it is necessary to calculate as many control laws as there are linear discrete 

models. Moreover, since the active value of 
act
k  in the active discrete model can be different 

to the included in S , it is necessary to calculate 1n   control signals. However, only the 

control signal associated to 
act
k  will be used to generate the actual control signal.  

In the control scheme, the reference discrete transfer function is calculated as follows: 

( ) ( )
( ) [ ( )· ( )]

( ) ( )

m o

m o m

m o

B z A z
H z Z h s G s

A z A z
           (11) 

where  oA z  is cancelled in order to design a causal controller. Now, define

     ' i

m mB z B z k , where 
 

 i

i
k k


 is the gain in equation 11. Then, the polynomials of the 

controller are      '

m oT z B z A z , and  iR z (monic) and  iS z  which are unique solutions 

of the Diophantine equation 
                 1

i i i i

m oA z R z k S z A z A z          

 (12) 

fulfilling the following conditions on the polynomial grades: 

         2 1; 2 ' 1
i i

o mgr S n gr A n gr A gr B        

         '
i i

o mgr R gr A gr A gr B n      
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for 1 i n   with      1'i i iR z B z R z  at each sampling time. Leading to the 

following control law,
   

   

   
   

 

^^
1 1

, , ,^ ^

1 1

i

ki i

c k c k p k

i i

k k

T q S q
f f F

R q R q

 

 

         

     (13)  for1 i n  . 

with 
         

     

 

1 ;
1

l l ll l l

k k k
k k o

l l l

k k k

P e
arbitrary

P


  

 

  

  


, provided that 
^ ^

,o otr A B
 
 
 

 is a co-prime 

pair, 

   
       

     

   
1

; 0
1

T

T
l l l l

l l l lk k k k

k k o ol l l

k k k

P P
P P P P

P

 

 

   


where 

 
 

,
,

l
l

p k
k p k

e F F


  is the identification error 

for the thk  sample  1,2,...,l N n     . 

An example of implementing the proposed control scheme is described in the next 

section. 

 

5. EXAMPLE APLICATION  
 

A practical 3-tooth, 30 mm diameter end mill with the modal characteristics in the X and 

Y directions corresponding to table 1 is chosen for this example. The work-piece is a rigid 

aluminium block whose specific cutting energy is 
1600tk kN mm  and the proportional 

factor is taken to be 0.07rk  . 

Table 1  Modal parameters of the tool. 

  1
n rad s    %  1( )k KNmm

 

X 603 3.9 5.590 

Y 666 3.5 5.715 

 

For the model reference control, the transfer function of equation 6 has a cutting pressure 

selected to be constant and equal to 
21200N mm   in all range of cutting parameters, the CNC 

time constant, 0.1m ms  and, 1c t sN S  . The continuous model reference system of the 

adaptive control is chosen to be a typical continuous second order plant with 0.75   and

 2.5 4n T    , where T is the sampling period. Also, it is desirable for the reference force 

to be maintained at1200N .  

The input space parameter where the system searches for quasi-optimal cutting 

parameters is given by the stability borderline (first graph of figure 3). This figure indicates 

that if programming cutting parameters are over the borderline then chatter vibrations will 

appear and the system will become unstable [4]. However, if programmed cutting parameters 

are below this borderline the system will work correctly without suffering chatter vibrations. 

Other mechanical and electrical restrictions when searching for programming adequate cutting 

parameters are related to spindle power consumption and feed drive limitations. Other safety 

constraints can be added in order to avoid uncertainty in searching regions and avoiding 

impractical minima during optimisation.  
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For example purposes, it is supposed that the following two cutting parameters represent 

two Pareto optimal fronts, 1 2710sS  and 1 0.3710dca  , as point 1, and 1 3260sS  ,

1 0.4127dca  , as point 2. A more in-depth explanation of how to obtain Pareto optimal 

cutting parameters is provided by Rubio et al. [7].  

Regarding the control scheme, it is taken into account that  1,0.7,0.5,0.3,0  , being 

min 1   and max 0  , corresponding with the points 1 and 2, respectively. Figure 3 depicts, 

from top to bottom, the stability lobes with the situation of the suggested Pareto optimal 

cutting parameters, the system output (resultant and reference forces) and the programmer 

feed rate when it is required to change the cutting parameter from point 1 to point 2 with and 

without applying the controller. The left hand figures show the outputs and control commands 

when the control scheme is applied. The right side corresponds to the case where the control 

scheme is not implemented.  When the cutting conditions change, a peak appears in the 

resultant forces. This peak can lead to excessive wear and damage or even breakage of the tool 

or machine components. Moreover, those peaks can have a detrimental influence on the 

surface finish of the workpiece. In the proposed control algorithm the cutting forces are 

maintained constant by adjusting the feed rate according to the presented algorithm.  

Then, as shown in figure 3, the Pareto optimal cutting parameters proposed by the self-

optimized system are below the stability borderline in the stable zone. Furthermore, the 

presented controller is able to move automatically around the allowable cutting space 

parameter, keeping the forces below a prescribed upper limit bound while programming 

feasible command federate in spite of changes in cutting parameters.  

Finally, the implemented controller can also be tuned in order to reduce the overshoot of 

the transitory state, which could also lead to damage or breakage of the tool or tool-holder and 

machine components and leave uneven surface finish.  

 
Figure 3: Situation of the programmed cutting parameters in stability lobes, output force 

signal and control signal with and without applying the control  
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6. CONCLUSIONS 

 
  This paper proposes a novel control scheme for controlling cutting parameters in 

milling applications. It is composed of two levels. In the first level, the self-optimised cutting 

parameters layer comprises life of the tool, material remove rate, surface roughness and the 

robustness of the system.  While the second layer, the parallel multi-estimation controller, 

provides an environment to control the milling process automatically under changes in cutting 

conditions. The change of the cutting parameters is scheduled by production requirements.  

For this purpose, an algorithm methodology is proposed in order to automatically adjust the 

parameter   choosing the most suitable controller among the set designed for each 

programmed optimal cutting parameters. The designed controller is able to smooth the 

transition between discrete control models and so reduce the peaks which appear when sudden 

changes are made in the cutting parameters.  

The fundamental idea of the control system is to work automatically, with a simple 

interface with the operator, based around the admissible cutting parameter space given by the 

well-known stability lobes. First, the optimization cost function is used to obtain the cutting 

parameters according to multiple objectives optimization. Secondly, the adaptive control 

scheme proposes different control laws working in parallel to address the non-linear and 

changeable milling process. Finally, the supervisory scheme manages the system so it can 

work automatically in between optimal working points. Simulation results support the 

performance of the system.   
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