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Abstract 

A dynamic equivalent black-box model, based on Prony analysis is presented in this 

paper. The proposed model is suitable for dynamic studies of microgrids, considering 

changes in the active and reactive power, bus voltages, currents and frequency. The 

developed model is evaluated using simulation results obtained from a medium voltage 

microgrid and test measurements recorded in a low voltage microgrid laboratory test 

facility. Results from the proposed model are in good agreement with the corresponding 

responses obtained from both simulations and laboratory tests. The examined microgrid 

configurations include rotating machines and inverter interfaced units implementing 

different control strategies, thus verifying the robustness of the proposed model.  
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1. Introduction 

In recent years the number of Distributed Generation (DG) units has increased 

rapidly, influencing the operation and the performance of power systems and especially 

distribution networks. To facilitate the analysis of such distribution grids the concept of 

microgrid (MG) has been introduced, containing different types of DG units, either 

renewable or conventional with or without energy storage devices [1], [2]. Due to the 

stochastic nature of renewable sources and the effect of the complex control strategies 

of the DG units, frequent changes in the network topology and the operating conditions 

of the DG units occur, influencing significantly the dynamic behaviour of the system 

[3]. Therefore the development of accurate and adaptive dynamic simulation models of 

MGs is essential, in order to enhance the DG utilization and investigate more efficient 

ways of operation [4]. 

There are several cases in the literature using detailed models to investigate the 

dynamic behaviour of MGs [5]-[7]. This approach however demands significant 

computational power and large simulation times for extended MG systems with large 

number of DG units and complex control schemes. There are also several other 

drawbacks, such as the lack of detailed information about the design and control 

parameters of DG units as well as the difficulties to incorporate efficiently the constant 

change of the generation mix and the network topology. 

To overcome the computational effort difficulties, reduced order models for MGs 

have been proposed, based on the same techniques previously used for the simulation of 

large-scale power systems. In [8] reduced order models are presented, based on 

eigenanalysis and Prony analysis and in [9] the Hankel-norm approximation is adopted. 

Similarly, a coherency identification based equivalent model is proposed in [10] 

whereas in [11] the same method has been implemented in the dynamic reduction 

program DYNRED. Dynamic equivalencing techniques are also widely used to 

implement reduced order simulation models, specifically for the case of wind farms 

[12], [13]. However, the identification of parameters in reduced order models also 

requires network information, thus the previous restrictions and drawbacks apply to this 

category as well. 

Dynamic equivalent models using grey- [14]-[16] and black-box [17]-[21] 

approaches can overcome the lack of detailed information of the DG unit parameters 
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and the network topology, and improve the numerical performance of the simulation. In 

both models the parameters are extracted mainly from measurements, using system 

identification techniques. However, in the black-box approach no prior knowledge of 

the model structure is required, while in the grey-box some initial information is 

necessary. Furthermore, modelling restrictions due to the network complexity, 

generation mix and control strategies are overridden by the black-box approach, 

ensuring the flexibility and generalized form of the developed models. The black-box 

parameters are derived using system identification techniques such as sub-space 

methods [17], [18] and Prony analysis [19], [20]. In most cases simulation results are 

used for the model parameter identification and validation, whereas in some cases field 

measurements from conventional, extended transmission networks [19]. 

In this paper a black-box dynamic model, suitable for the simulation and analysis of 

MG systems is presented. It is based on Prony analysis and nonlinear least square 

optimization, as in [20]. The model represents the dynamic performance at a reference 

point of the MG, when the MG is subjected to small disturbances and thus can be used 

for small signal stability analysis. The reference point can be the Point of Common 

Coupling (PCC) or a DG unit point of coupling within the MG. The model outputs are 

the dynamic responses of the active and reactive power, the bus voltage, the current and 

the frequency in a modular structure with decoupled system variables. Measurement 

data are used to extract the model parameters, which can be updated online, providing 

an accurate representation of the changing system structure. The model can be 

combined with power system analysis software packages and can be implemented as a 

portable network feeder element, representing the MG system [14], [18]. The proposed 

model is used in several MG topologies including both rotating and inverter interfaced 

DG units with different control strategies. The influence of the above parameters on the 

calculated Prony terms, the model response and the dynamic behaviour of the MG 

system are investigated systematically. The model is also validated using measurement 

test data recorded in a laboratory scale MG system at the University of Strathclyde, UK 

[22].   

 

2. Modelling Methodology 
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A. Black-Box modelling fundamentals 

Traditionally, Prony analysis has been used in large power transmission system 

studies as in [17] and [19], where slow transients up to a few decades of seconds have 

been simulated. The proposed model focuses on the representation of the dynamic 

behaviour of microgrids, where transients involved are generally faster and with larger 

damping, due to the small inertias of the rotating DG units and the resistive behaviour of 

the microgrids [5], [6], [14]-[16].  

The model is based on Prony analysis and nonlinear least square optimization in 

order to identify the system eigenvalues from recorded dynamic responses at a reference 

point of the MG and represent the MG dynamic behaviour. The model outputs can be 

the active (P) and reactive power (Q), both of which can be incorporated in power 

system analysis software as a feeder element suitable for small signal stability analysis, 

as well as the bus voltage (V), system frequency (f) and current (I), which can be used 

for voltage/frequency stability analysis and dynamic studies. 

Prony analysis provides an efficient way to fit a dynamic response with a sum of 

damped sinusoids [19], [20], [23]. However, for each individual disturbance in a MG 

configuration (different disturbance amplitude or pre-disturbance steady state condition 

of the MG) a new set of Prony terms must be extracted, resulting in a huge amount of 

data and considerable computational burden. The proposed model, in contrary to [20], 

overcomes this inherent restriction by implementing additional correction factors, 

limiting the required data for the estimation of the model parameters. 

The proposed model is suitable for the analysis of small signal dynamics of MGs, 

when subjected to small internal disturbances, e.g. changes in the load power and the 

operational conditions of DG units. Therefore, the investigated dynamic disturbances 

are considered large enough to influence the system dynamics and small enough to 

ignore nonlinearities in the system [24].  

B. Model formulation 

The generic equation, describing the proposed model is given in (1). The model 

handles individually each of the MG system variables (P, Q, V, I, f), resulting in a 

modular structure of five distinct, computationally decoupled subsystems. The 

eigenvalues of each distinct system variable are calculated individually by the 

corresponding measurements of this variable only, which practically include any 
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interaction of the other system variables caused by the actual system control loops. 

ˆ ˆ    
tr 0

Y ΔY U Y U Y  (1) 

where 

 1 2 3 4 5
ˆˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ

TT
y y y y y P Q V I f  

 
Y  (2a) 

   1 2 3 4 5 0 0 0 0 0

T T

0 0 0 0 0y y y y y P Q V I f 0Y  (2b) 

   1 2 3 4 5diag y y y y y diag P Q V I f          ΔY  (2c) 

 1 2 3 4 5
ˆˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ

tr tr tr tr tr tr tr tr tr trdiag y y y y y diag P Q V I f    
  
 trY  (2d) 

            
T

u t u t u t u t u tU  (2e) 

Function u(t) is the unit step, Ŷ  is the output vector,  
0

Y  represents the MG pre-

disturbance steady state condition and ΔY  is the input vector and includes the step 

changes Δym. All vectors are of order M , which is the total number of the system 

variables. Function  ˆ
tr my t , where 1,2,...m M , represents the disturbance of the m-th 

system variable and is fitted by a sum of Nm Prony terms as given in (3). 

1 1

1
( ) cos( ),

2

m m

mn mn mn

N N
j t t

tr m mn mn mn mn

n n

y t A e e A e t
    



 

     (3) 

Parametersmn , mn  and    mn mn mnj  are the amplitude, phase and model 

eigenvalue, respectively and mn , mn  are the corresponding angular frequency and the 

damping coefficient [24]. Each Prony term is the result of the sum of complex 

conjugates and represents a damping oscillation. The proposed model has a generalized 

form, since by selecting properly the order Nm of the corresponding model subsystem, it 

can include all types of generation units, control schemes and load types. A change in 

the topology of the MG is represented by introducing or subtracting the corresponding 

Prony terms in (3). 

C. Parameter identification 

The model parameter identification process is presented in Fig. 1 by means of a 

flowchart. In order to calculate all model parameters, three different recorded responses 

are required, assuming that each dataset contains measurements of all system variables. 

In real world applications measurement data can be obtained by Phasor Measurement 

Units (PMUs) in smart grids or alternatively from offline simulations, using commercial 
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software packages. 

First, the model initialization is based on a random system disturbance and its 

preceding steady-state condition. This set of events defines a base scenario for the 

model. The dynamic response of the MG at the reference point is recorded for the base 

scenario, as well as for two additional disturbances; one of different amplitude and one 

of different pre-disturbance steady state condition than the base scenario. 

 

[Fig. 1] 

 

Next, the model parameters Amn, ωmn, σmn, and φmn of (3) are extracted for each of the 

three datasets, using Prony analysis to get an initial estimation [17], [19], [23], [24], 

while the initial operating condition y0m is acquired directly from the corresponding 

measurement data. The appropriate number of Prony terms for each system variable, 

and thus the order of each subsystem can be identified using the subsystem 

identification method N4SID [25], available in MATLAB [26]. In certain cases, 

especially for non-oscillating responses, the proposed system order can be further 

reduced by trial and error methods. In all cases presented in this paper, two Prony terms 

proved enough to lead to satisfactory performance.  Since the accuracy of Prony 

analysis is usually not very high, the nonlinear least square optimization technique is 

also applied to improve the initial parameter estimation as in [20]. The curve fitting tool 

of MATLAB [26] is adopted for this purpose, using the trust-region algorithm. Similar 

results are also obtained, using the Levenberg-Marquardt and Gauss-Newton methods 

available also in MATLAB. For the nonlinear least square optimization procedure an 

initial value as well as a lower and upper boundary for each of the estimated parameters 

must be specified. The initial values are derived from Prony analysis, while proposed 

empirical guidelines are used to initialize and adjust the boundary values, in order to 

reach the predefined error criteria. The estimation procedure target is to minimize the 

root mean square error (RMSE) and also maximize the coefficient of determination (R
2
) 

defined in (4) and (5), respectively [26]. According to the results from numerous 

simulations, the maximum and minimum targets for the RMSE and R
2
 are selected 

empirically as 0.003 and 0.9, respectively.  The target error values can be either 

tightened to increase the accuracy of the identification process or loosened to reduce the 
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number of iterations and thus the required execution time of the proposed method. 

      
2

1

1
ˆmin min

mK

m m m

km

RMSE y y k y k
K 

 
     

  
  (4) 
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 
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 

m

m
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where 

      
2
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 
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k
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    
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 
mK

m m m

k

SST y y k y  (5c) 

where 
my  and ˆ

my are the original and estimated values of the system variables, 

respectively, 
my  is the mean value and mK  the corresponding number of samples. The 

adopted empirical guidelines are summarized below: 

 The initial values for the nonlinear least square optimization are provided by Prony 

analysis. The boundaries of the Prony terms are set according to the corresponding 

initial value as ± 10% for the ωmn term, ± 100% for the Amn term, ± 50% for the σmn 

term and -2π up to 2π for the φmn term. 

 Fourier analysis can be additionally applied for the initial estimation of the ωmn 

parameter in case Prony analysis results are not accurate. 

 If the RMSE and R
2
 targets are not met, the initial parameter estimation value and 

the corresponding boundaries are increased until the error targets are met. If the 

errors become worse the initial values are decreased. 

 For a given MG the recurrent application of the parameter estimation procedure can 

provide enough historical data to manually set the boundaries to expected values. 

The model parameter estimation procedure can be repeated arbitrarily when crucial 

changes in the MG structure occur, e.g. connection/disconnection of a DG unit. 

Furthermore, the repetition of the algorithm can be executed in fixed time intervals 

following a good practice guide in different MGs, as in the case of dynamic load models 

[27]. However, as the estimation procedure is computationally efficient, the algorithm 

can be repeated each time the three required input datasets are available from 

measurements and thus any tracked changes in the MG will be reflected in the model 
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parameters immediately. 

D. Model correction factors 

Next, the model correction factors are calculated. The eigenvalues λmn and phase φmn 

of all system variables can be considered constant as calculated from the base scenario, 

since the system is assumed linear. However, parameter Amn strongly depends on the 

disturbance amplitude and the pre-disturbance steady state condition of the MG as 

depicted in Fig. 2, showing in general a linear behaviour. 

 

[Fig. 2] 

 

Therefore, the behaviour of parameter Amn against the disturbance amplitude and the 

pre-disturbance steady-state condition of each Prony term is approximated by the linear 

correction factors CF1mn and CF2mn, as shown in (6)-(8).  

ˆ
mn mn mn base mnA CF1 CF2 A     (6) 

1mn mn mnCF1 a1 x b1   (7) 

22 2 2mn mn mnCF a x b   (8) 

where Abase-mn is the corresponding parameter of the base scenario. CF1mn approximates 

linearly the variation of Amn against the disturbance amplitude, while similarly the pre-

disturbance steady state condition variation is represented by CF2mn. Variable x1 

indicates the percentage change of the disturbance amplitude from the nominal 

operating condition, as an absolute value. On the other hand, variable x2 indicates the 

percent change from the pre-disturbance operating condition of the base scenario. 

Therefore x2 is always zero for the base scenario while x1 can take any value depending 

on the available measurement set. Since correction factors are linear functions, two 

points are required in order to determine their values. For each correction factor one 

point is acquired from the base scenario, while the other from the additional dataset, 

thus the resulting total number of the minimum required measurement datasets is three. 

Parameters a1mn and a2mn express the slope of CF1mn and CF2mn curves, therefore their 

sign and magnitude show the monotony and sensitivity of the corresponding Amn 

parameter against the step amplitude and the pre-disturbance steady state condition. 

This is an indication of the degree of influence of the specific eigenvalue on the overall 

MG dynamic behaviour as the step magnitude and the pre-disturbance steady state 
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condition changes. 

Finally, taking into account the correction factors for each Prony term the proposed 

black-box model described by (1) is rewritten in (9).   

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

0 0 0 0 0 0 0 0 ( )

0 0 0 0 0 0 0 0 ( )

0 0 0 0 0 0 0 0 ( )
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0 0 0 0 0 0 0 0 ( )

tr
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 (9a) 

where 

1

ˆ( ) cos( ),
  



 
m

mn

N
t

tr m mn mn mn

n

y t A e t  (9b) 

and ˆ
mnA

 

are calculated using (6)-(8).  

E. Model characteristics 

The most significant advantages of the proposed model are summarized below: 

 The black-box approach eliminates the need for information considering the 

topology and the operating condition of the MG, relying solely on recorded 

dynamic responses. 

 Only the dominating eigenvalues affecting the dynamic response of the system are 

identified. 

 The parameter identification algorithm is computationally efficient, requiring 

approximately 30 s for each loop of Fig. 1 in a typical personal computer, after the 

measurement data sets are available. Therefore, the parameters can be updated at a 

regular basis to obtain a more accurate representation of the current system 

topology. 

 Apart from P and Q also V, f and I are simulated providing a comprehensive and 

complete view of the MG system dynamics. 

 The introduction of the correction factors minimizes the required measurement 

datasets and enables the implementation of a generic dynamic model instead of a 

set of fitted terms as given in [20]. 

 The proposed empirical guidelines enhance the performance of the method, 

especially in case of real measurement data. 
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 Historical data of the model parameters and correction factors can be associated 

with certain operating conditions, providing greater flexibility in the application of 

the model. Furthermore, statistical analysis of the recorded parameters from 

different MGs can provide sets of generalized model parameters that can be used in 

cases where measurements are not available [14]. 

 The model is based on measurements to extract the model parameters and since 

stable MG system conditions are used in the identification process, only the stable 

eigenvalues of the system are identified. 

 The model can be implemented in power system analysis platforms, exchanging 

active and reactive power with the rest of the grid model, similarly to a dynamic 

load model [14], [15], [18]. Multiple black-box equivalents can be integrated as part 

of a larger network configuration without the need to coordinate their voltages or 

frequencies, provided that they are connected to a detailed modelled part which 

imposes them at their connection points. 

 

3. Analysis of the model performance 

A simulation model of a medium-voltage (MV) MG and a low-voltage (LV) 

laboratory-scale MG system, shown in Figs. 3a and 3b, respectively, are used in the 

analysis. Similar MG configurations are also implemented in [5] and [6].  

Using the simulation model, a parametric study is conducted in order to investigate 

systematically the influence of the different model parameters on the model 

performance as well as to evaluate the accuracy of the model in a MV MG topology. 

Measurement results from the laboratory-scale MG system are presented in Section 4 

and are used to validate the model performance under real-world operating conditions. 

A. MV Network topology 

The MV MG is connected to the external 20 kV, 50 Hz network, represented by a 250 

MVA feeder. Four DG units and a static load are included in the topology. DG1 and 

DG2 are synchronous generators with rated power 5 MVA and 2 MVA, respectively. 

The synchronous generators use conventional excitation control systems. The inverter 

interfaced units DG3 and DG4 with rated power 0.7 MVA and 1.2 MVA represent a 

Fuel Cell (FC) system and a photovoltaic (PV) unit, respectively. Both DG3 and DG4 

implement a PQ control strategy. All DG units are connected to the PCC via individual 
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step-up 0.4/20 kV transformers and 1-km long overhead distribution lines. The MG 

detailed model is simulated using MATLAB/Simulink [26], whereas further information 

on the modelling procedure and MG properties can be found in [28], [29]. 

 

[Fig. 3] 

 

B. Simulation Case Studies 

Different case studies considering the MG pre-disturbance steady state conditions as 

well as the disturbance types and amplitude are investigated. The examined test cases 

(TCs) include generator torque changes of DG1 and DG2 (TC1) from 5% to 30%, step 

changes of DG3 and DG4 power output (TC2) and step changes in the static load power 

(TC3). Additionally, in each test case a 5% to 30% increase in the pre-disturbance 

steady state operating point of the MG real and reactive power is considered. The model 

inputs and outputs are given in per-unit (pu), for a base voltage of 20 kV with the base 

power 10 MVA, a typical value for the installed power of MV MGs.  

In all examined cases the MG is operating in grid-connected mode via a strong 

interconnection with the external grid. Therefore the frequency at the PCC is practically 

unaffected by the disturbances applied to the MG. 

C. Prony term analysis 

The modelling procedure described in Section 2 is followed for TC3. Assuming the 

base scenario all DG units operate at nominal power and the static load is 7.48 MW, 3 

MVAr. The disturbance examined is a 30% step increase in the active and reactive 

power of the load. From the dynamic responses calculated at the PCC, the 

corresponding Prony term parameters of the black-box model are presented in Table 1. 

Index m takes values 1, 2, 3 and 4, corresponding to the state variables P, Q, V and I. 

Two eigenvalues are related to the active power response with frequencies equal to 4.3 

Hz and 7.7 Hz, corresponding to the oscillatory frequencies of synchronous generators 

DG1 and DG2, respectively. One eigenvalue is involved in the reactive power response 

with a frequency of 0.8 Hz, caused mainly by the DG1 and DG2 excitation systems. The 

bus voltage has a similar response to the reactive power, while for the current, two 

eigenvalues are required; one associated with the oscillations of the active power of the 

larger DG1 and one associated with the changes in the reactive power. 
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Table 1 Prony terms for the base scenario 

Prony 

terms 

P 

(m=1) 

Q 

(m=2) 

V  

(m=3) 

I 

(m=4) 

Am1 (pu) 1.31·10
-2

 1.07·10
-3

 2.99·10
-2

 1.64·10
-2

 

Am2 (pu) 1.42·10
-2

 - - 1.50·10
-2

 

σm1 (1/s) -4.173 -3.07 -3.005 -2.98 

σm2 (1/s) -11.77 - - -5.60 

ωm1 (rad/s) 26.96 5.02 5.073 4.995 

ωm2 (rad/s) 48.59 - - 23.69 

φm1 (rad) 1.22 -1.79 -1.858 1.26 

φm2 (rad) 1.28 - - 5.33 

D. Calculation of the correction factors 

Next, the two additional measurement sets are used to calculate the correction factors 

CF1mn and CF2mn. The first point for both CF1mn and CF2mn curves is the base scenario, 

while the case of a 5% step increase in the load power and of a 5% increase in the pre-

disturbance steady state MG condition of the active and reactive power are considered 

as additional points for CF1mn and CF2mn, respectively. The calculated correction 

factors are presented in Table 2. 

According to the proposed modelling methodology, the model eigenvalues and phase 

parameters are considered constant and equal to the corresponding of the base scenario. 

The validity of the above assumptions is verified calculating the model parameters in 

detail for all examined disturbances. The mean value of the σmn parameters, normalized 

with the corresponding base scenario value, is between 0.946 and 1.0117 with variance 

between 1.11·10
-3

 and 7.21·10
-5

. Considering the variance of the normalized ωmn and 

φmn, the values are significantly low in the order of 10
-4

 to 10
-6

 with mean values close 

to 1. 

 

Table 2 Correction factor parameters 

Correction factor 

parameters 

P 

(m=1) 

Q 

(m=2) 

V 

(m=3) 

I 

(m=4) 

CF1m1 
a1m1 3.31 3.334 3.313 2.78 

b1m1 8.08·10
-3

 8·10
-5

 6.04·10
-3

 0.17 

CF2m1 
a2m1 -0.412 -4.6·10

-2
 -0.15 -2.10 

b2m1 1 1 1 1 

CF1m2 
a1m2 3.383 - - 3.75 

b1m2 -1.48·10
-2

 - - -0.124 

CF2m2 
a2m2 0.578 - - 1.11 

b2m2 1 - - 1 
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E. Sensitivity analysis 

Sensitivity analysis is applied to investigate the influence of each black-box model 

parameter on the MG dynamic responses and clarify the degree of accuracy required 

during the identification process. The normalized sensitivity functions are calculated 

using (10) with respect to the model parameter p under study (Amn, ωmn, σmn and φmn).  

( ) ( )

( )


 


mY s m

p

m

Y sp
S

Y s p
 (10) 

where Ym(s) is the Laplace Transform of ym(t) of (9). The normalized sensitivity in (10) 

is a function of frequency, thus the suprema of all parameters in the frequency range of 

0 Hz to 100 Hz are used in the comparisons. In all examined cases the suprema are 

located at a frequency close to the eigenfrequency of the corresponding Prony term. 

According to the calculated results, parameter ωmn presents the highest sensitivity, with 

φmn, Amn and σmn following in order. Therefore, the accuracy of this parameter is of main 

importance and stricter limits need to be specified as presented in Section 2. For this 

purpose, the initial estimation of ωmn using Prony analysis can be improved by applying 

Fourier analysis.  

 

Table 3 Active power R
2
 values for different model parameter variations. 

Prony 

terms 

Model Parameter Increase  

+10% +20% 

ω11 0.934 0.794 

ω12 0.988 0.957 

φ11 0.995 0.981 

φ12 0.998 0.992 

A11 0.996 0.984 

A12 0.998 0.993 

σ11 0.999 0.995 

σ12 0.999 0.998 

 

The above analysis is also verified by increasing 10% and 20% each model parameter 

from the original value and calculating the R
2
, assuming the corresponding dynamic 

responses data sets. The lower the R
2
 value, the higher is the influence of the model 

parameter. Results shown in Table 3 are for the active power response and are in total 

agreement with the above remarks, since variations in both angular frequency 

parameters introduce the highest errors in the calculation of the dynamic responses.  
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F. Model validation 

Dynamic responses for the case of 15% step increase in the active and reactive power 

of the load and 15% increase in the pre-disturbance steady state MG condition of the 

active and reactive power are simulated, in order to validate the model accuracy. 

Dynamic responses are calculated using:  

 detailed simulations without system reduction, 

 the proposed model and its correction factors, 

 Prony terms directly extracted from detailed results as in [20], 

 parameters calculated by the base scenario (static load: 7.48 MW, 3 MVAr – 

30% increase in the load).  

First, the resulting ˆ
mnA  parameters from (6) are compared in Table 4 with the 

parameters extracted from the simulation data for the examined disturbance. The 

percentage difference is calculated using (11), where Amn are the extracted parameters 

and ˆ
mnA the parameters derived from the proposed model. 

ˆ
 (%) 100mn mn

mn

A A
difference

A

 
   
 

 (11) 

The dynamic responses of system variables P, Q and V, I are shown in Figs. 4-7, 

respectively. Results show a very good agreement between the proposed model and the 

detailed simulations. Differences between the proposed model parameters and the 

directly extracted, vary from 0.1 % up to 17 % as shown in Table 4, although the 

corresponding differences in the dynamic responses are generally smaller, as shown in 

Figs. 4 - 7. The results from the base scenario show the effect of Amn parameters on the 

dynamic response amplitude. If only the initial measurement from the base scenario is 

used to extract the model parameters, significant errors may occur in the Amn 

parameters, as shown in Figs. 4-7, highlighting the importance of the correction factors. 

 

 

Table 4 Comparison of extracted and model parameters 

 Prony Terms 
P 

(m=1) 

Q 

(m=2) 

V 

(m=3) 

I 

(m=4) 

Extracted 

Parameters 

m1A  6.36·10
-3

 1.486·10
-4

 5.1·10
-5

 7.84·10
-3

 

m2A  7.28·10
-3

 - - 7.81·10
-3
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Proposed 

Model 

ˆ
m1A  6.20·10

-3
 1.485·10

-4
 5.4·10

-5
 6.55·10

-3
 

ˆ
m2A  7.59·10

-3
 - - 7.65·10

-3
 

Difference 

% 

ˆ
m1 m1

m1

A A
A


 2.52 0.07 -5.88 16.45 

ˆ
m2 m2

m2

A A
A


 -4.26 - - 2.05 

 

 

[Fig. 4] 

 

[Fig. 5] 

 

[Fig. 6] 

 

[Fig. 7] 

 

A similar analysis is also conducted for TC1 and TC2. The system dynamics in TC1 

are mainly related to the dynamic behaviour of DG1 and DG2, depending on the DG the 

disturbance is applied to, while in TC2 the inverter power output changes have a similar 

effect on the MG performance as in TC3. 

 In Table 5 the minimum and maximum errors are summarized for all system 

variables of each TC. The R
2
 values are calculated, assuming as reference the results of 

the detailed simulation, whereas the estimated responses are calculated using the 

proposed model. In all cases the results are in very good agreement, verifying the 

validity of the proposed model for different types of disturbances and MG operating 

conditions, with the worst R
2
 observed in TC3. 

 

Table 5 Minimum and maximum R
2
 values for all examined test cases 

Test cases min max 

TC1 0.988 0.996 

TC2 0.988 0.993 

TC3 0.968 0.995 

G. Simulation time 

Finally, the computational efficiency of the proposed method is investigated, 

comparing the indicative simulation time, required for the calculation of dynamic 

responses in different MG configurations.  

Both detailed simulation and the proposed model are implemented in 
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MATLAB/Simulink using an Intel Core 2 Duo E8400 processor at 3 GHz with 4GB of 

RAM. As shown in Table 6 in all cases the simulation time of the proposed model is 

less than 0.1 s, directly related to the number of the Prony terms involved in the 

modeling procedure. As expected, the computational efficiency of the proposed model 

increases with the number of the DG units involved in the MG configuration. 

 

Table 6 Indicative simulation times. 

DG units 
Number of 

Prony terms 

Proposed model  

time (s) 

Detailed simulation 

time (s) 

DG1 1 0.088 4.38 

DG1, DG2 2 0.093 7.41 

DG1, DG4 1 0.088 203.74 

DG1, DG3, DG4 1 0.088 977.04 

DG1, DG2, DG3, DG4 2 0.093 1138.21 

 

4. Model evaluation with measurements 

The analysis in the laboratory-scale MG test facility is mainly focused on 

disturbances caused by step load power increases in the MG operating in islanded mode 

to highlight the effect of frequency variations as well. Simulation and measurement 

responses are also presented for the grid-connected mode of operation, in order to 

validate the accuracy of the proposed model using measurement data sets under 

different operating conditions. 

A. System under study 

The examined test facility is a low-voltage LV three-phase, 400 V, 50 Hz, 100 kVA 

laboratory-scale MG, presented in Fig. 3b. It consists of sub-MGs #1 and #2, which can 

operate in grid-connected and islanded mode, using the tie switch S1. A 1.21 per-unit 

(p.u.) inductance (L1) is included in the network to represent a weak network 

interconnection. The laboratory is equipped with measurement devices to record the 

active and reactive power, the bus voltage and the frequency at each MG node with a 

sampling time of 2 ms. The measurement techniques implemented in the laboratory 

include several stages of hardware filtering, sampling and software algorithms using 

cascaded Finite Impulse Response filters. Considering the frequency measurements an 
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efficient hybrid method using the Clarke transformation and three single phase 

frequency locked loops is used, minimizing the ripple. No additional data processing is 

applied to the measurement data during the modelling procedure. Detailed information 

on the measurement algorithms is given in [30].  

Sub-MG #1 consists of a 2 kVA synchronous generator (DG1), a 10 kVA inverter 

(DG2), a 10 kW/7.5 kVAr static load bank and a 2.2 kW, 0.87 lagging asynchronous 

machine. DG1 is driven by a dc motor emulating a fast-response prime mover. Both 

DG1 and DG2 follow a frequency-active power (f-P), voltage-reactive power (V-Q) 

droop control scheme, providing frequency and voltage support to the grid as ancillary 

services. 

Sub-MG #2 consists of an 80 kVA synchronous machine (DG3) and a 40 kW/30 

kVAr static load bank. DG3 is driven by a dc motor representing a slow-response prime 

mover. The control scheme followed is an f-P, V-Q droop control strategy and the 

generator can only operate in islanded mode, acting as a feeder and providing additional 

support to the voltage and frequency due to its large rated power. 

B. Model development 

The black-box model of Sub-MG #1 is developed from measurements for the 

islanded mode of operation, following the proposed methodology of Section 2. All 

system variables are recorded at Bus-3. The dynamic performance of the MG is affected 

by the droop controlled DG units of sub-MG #1, varying their power output during 

disturbances according to the corresponding slope. 

In the base scenario DG1 is providing 1 kW/ 0.75 kVar and DG2 5 kW/ 3.75 kVar. 

The static load is 3.5 kW with power factor 0.8 lagging and the asynchronous motor is 

operating at its nominal power. A 40% increase is applied to the active and reactive 

power of the static load. All system variables are presented in pu with a base voltage of 

400 V, base frequency 50 Hz and base power equal to 12 kVA. 

In Table 7 the identified parameters for the base scenario are presented. Two Prony 

terms are required for all system variables apart from the bus voltage. Active power and 

current dynamic responses present a slow oscillating frequency at 0.2 Hz and a faster 

one at 2.5 Hz, associated with the greater mass DG3 and the fast inverter interfaced 

DG2, respectively. The reactive power has a low frequency eigenvalue, due to the 

synchronous generators excitation systems, and a higher frequency one associated with 
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DG2. The bus voltage has a similar response to the reactive power but it is affected 

more by DG2. Finally, the system frequency response is represented by two Prony 

terms with similar oscillating frequencies but with different damping coefficients. This 

is due to the effect of DG3 on DG2, according to the corresponding f-P droop 

characteristic.  

Table 7 Prony terms for the base scenario 

 P 

(m=1) 

Q 

(m=2) 

V 

(m=3) 

I 

(m=4) 

f 

(m=5) 

Am1 (pu) 0.24 2.56·10
-2

 2.02·10
-3

 0.41 7.65·10
-2

 

Am2 (pu) 9.9·10
-2

 0.18 - 0.19 7.19·10
-2

 

σm1 (1/s) -0.97 -0.73 -1.05 -1.03 -1.94 

σm2 (1/s) -20.00 -5.23 - -20.00 -2.64 

ωm1 (rad/s) 1.39 1.63 3.67 1.41 1.73 

ωm2 (rad/s) 15.79 3.67 - 14.64 1.88 

φm1 (rad) -0.11 2.14 -2.04 -0.14 -1.02 

φm2 (rad) 0.79 -3.10 - 0.81 1.84 

 

The two additional measurements required to calculate the model correction factors 

correspond to a 30% step increase in the load power and a different pre-disturbance 

steady state condition  at 6.5 kW (30 % increase from the base scenario). Finally, the 

black-box model is developed, by introducing the calculated correction factors. 

In order to evaluate the model performance a case where the Sub-MG #1 is driven to a 

new pre-disturbance steady state, is investigated with active and reactive power higher 

than 15% from the base scenario. Additionally, a disturbance caused by a 50% active 

and reactive load power increase is applied. Prony term parameters extracted directly 

from measurements and the corresponding using the proposed model are given in Table 

8. In Figs. 8 and 9 measurement and simulation dynamic responses are compared, with 

Prony terms calculated using the proposed model and also directly extracted from the 

test data. 

 

Table 8 Extracted parameters and parameters from the developed model 

 Prony Terms P 

(m=1) 

Q 

(m=2) 

V 

(m=3) 

I 

(m=4) 

f 

(m=5) 

Extracted 

Parameters 

m1A  0.27 2.4·10
-2

 2.26·10
-3

 0.45 9.05·10
-2

 

m2A  0.134 0.215 - 0.24 8.59·10
-2

 

Proposed ˆ
m1A  0.25 3.14·10

-2
 2.06·10

-3
 0.41 8.89·10

-2
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Model ˆ
m2A  0.131 0.201 - 0.25 8.51·10

-2
 

Difference 

% 

ˆ
m1 m1

m1

A A
A


 7.41 30.5 -8.9 -10.41 1.81 

ˆ
m2 m2

m2

A A
A


 1.95 -6.5 - 6.15 0.83 

 

[Fig. 8] 

 

[Fig. 9] 

 

Results show that the overall model performance is in good agreement with 

measurements. The RMSE and R
2
 for the different system variables varies from 

1.88·10
-4

 up to 1.68·10
-2

 and from 0.9873 up to 0.9412, respectively. Moreover, it is 

observed that higher errors in the Amn parameter estimation by the proposed model does 

not necessarily lead to higher errors in the dynamic responses, since the corresponding 

eigenvalue may not be dominant in the MG response. This is the case mainly for the 

reactive power as shown in Table 8, where there is a -6.5% error in the A22 parameter, 

corresponding to the faster and dominating eigenvalue and a 30.5% error in the A21 

parameter, corresponding to the slower and less significant eigenvalue. 

 

C. Application of the model on individual DG units 

A black-box model is also implemented for the inverter interfaced DG2 unit of the 

examined laboratory test case. The proposed methodology is followed as in the case of 

the whole MG topology, using two Prony terms for both the active and reactive power. 

DG2 dynamic behaviour is affected by the system frequency and voltage variations, 

according to the corresponding f – P and V – Q droop characteristics. The active and 

reactive power dynamic responses are presented in Fig. 10 and are compared with 

measurements, showing good accuracy, since the RMSE and R
2
 are equal to 1.57·10

-2
 

and 5.9·10
-3

, and 0.893 and 0.804 respectively. Therefore, the proposed model provides 

also the flexibility to implement black-box models of individual DG units, where 

detailed technical characteristics and parameters are unknown. 

 

[Fig. 10] 
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D. Application of the model in grid-connected mode of operation 

 

The proposed model is also used for the case where Sub-MG#1 is grid-connected. All 

DG units and loads of Sub-MG#1 operate at the same conditions as in the islanded case, 

while Sub-MG#2 is disconnected. The results for the active and reactive power are 

shown in Fig. 11. The eigenfrequencies involved in the system dynamics are higher for 

the grid-connected operation compared to the islanded. For the active power only one 

term is needed and the dominating frequency is 3.3 Hz. Considering the reactive power 

two terms are required with frequencies 2.5 Hz and 27.8 Hz. The damping oscillations 

are identified more accurately leading to smaller differences between the proposed 

model parameters and the directly extracted and the corresponding R
2
 values range from 

0.95 up to 0.98. 

 

[Fig. 11] 

 

5. Conclusions 

A black-box dynamic MG model, based on Prony analysis is presented in this paper. 

The proposed model is suitable for the simulation of the dynamic responses of different 

MG system variables (P, Q, V, I and f), when subjected to internal disturbances. The 

disturbances include changes in the DG unit operating conditions and in the active and 

reactive power of the MG. 

The model structure has a modular form and can be combined with power system 

simulation software platforms or used as a standalone analysis tool for power system 

dynamic studies. It has a generalized form, providing great flexibility in modelling a 

variety of MG systems with different degrees of complexity by adjusting the required 

terms without the need of prior knowledge of the MG topology. It can also be used to 

simulate individual DG units, eliminating the need to access the detailed parameters of 

the unit. The model incorporates a parameter calculation procedure, based on proper 

correction factors, which minimizes the need to update the model parameters after each 

disturbance thus improving significantly its numerical efficiency. Moreover, empirical 

guidelines are defined to help the parameter identification procedure. 

Simulation data from a MV network as well as real measurements from an LV MG 

test facility in grid-connected and islanded mode of operation are used to evaluate the 
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performance of the proposed model. Different control strategies are investigated, 

including PQ and droop control schemes, in order to ensure the validity of the model for 

a wide range of operating conditions. The obtained results are in good agreement with 

the corresponding detailed simulations and real measurements, showing that the 

proposed model can be efficiently used in all types of MG systems. 
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Figure Captions 

 

Fig. 1: Black-box modelling procedure flowchart. 

Fig. 2: Amplitude parameter of Prony term against the disturbance amplitude and the 

MG operating condition. 

Fig. 3: MG systems under study for a) simulations and b) measurements. 

Fig. 4: Dynamic response of the active power.  

Fig. 5: Dynamic response of the reactive power. 

Fig. 6: Dynamic response of the bus voltage.  

Fig. 7: Dynamic response of the current. 

Fig. 8: Responses of the a) active and b) reactive power. 

Fig. 9: Responses of the a) bus voltage, b) current and c) frequency. 

Fig. 10: Responses of the a) active, b) reactive power of the inverter. 

Fig. 11: Responses of the a) active, b) reactive power for grid-connected operation. 
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